UNIVERSITY OF TORONTO
Faculty of Arts and Science
term test \#2, Version 2
CSC236F
Date: Friday November 16, 11:10-12:00pm or 12:10-1:00pm
Duration: 50 minutes
Instructor(s): Danny Heap
Examination Aids: pencils, pens, erasers, drinks, snacks

first and last names:

utorid:

student number:

Please read the following guidelines carefully!

- Please write your name, utorid, and student number on the front of this exam.
- This examination has 2 questions. There are a total of 5 pages, DOUBLE-SIDED.
- Answer questions clearly and completely.
- You will receive 20% of the marks for any question you leave blank or indicate "I cannot answer this question."

Take a deep breath. This is your chance to show us

How much you've learned.
We WANT to give you the credit
Good luck!

1. [13 marks] (≈ 35 minutes)

Define $T(n)$ by:

$$
T(n)= \begin{cases}1 & \text { if } n<3 \\ 1+2 T(n-3) & \text { if } n \geq 3\end{cases}
$$

(a) [3 marks] Let $q \in \mathbb{N}$, and let $r \in\{0,1,2\}$. Use the method of repeated substitution (unwinding) to find a conjecture for a closed form for $T(3 q+r)$, that is some function c, using a fixed number of elementary operations, such that $c(3 q+r)=T(3 q+r)$. You may assume that if $r \in \mathbb{R}, n \in \mathbb{N}$, and $r \neq 1$, then $\sum_{i=0}^{i=n} r^{i}=\left(r^{n+1}-1\right) /(r-1)$, if that assumption turns out to be useful.
sample solution: I notice that if $3 q+r-3=3(q-1)+r$, and that $T(r)=1$, so assuming $q \geq 1$ for the moment:

$$
\begin{aligned}
T(3 q+r) & =1+2 T(3(q-1)+r)=1+2(1+2 T(3(q-2)+r)) \quad \text { \# by definition of } T \\
& =2^{0}+2^{1}+2^{2} T(3(q-2)+r) \\
& = \\
& =\vdots \text { (I see a pattern) } \\
& =2^{0}+2^{1}+2^{2}+\cdots+2^{q} T(3(q-q)+r)=\sum_{i=0}^{i=1} 2^{i}=2^{q+1}-1
\end{aligned}
$$

\# using assumed identity for geometric series
This form also agrees with $T(3 q+r)$ when $q=0$, so I'll conjecture $c(q)=2^{q+1}-1$

- 2 marks for 2 successful substitutions
- 0.5 marks for successful derivation with summation
- 0.5 marks for replacing the summation with closed form
(b) [6 marks] Let $r \in\{0,1,2\}$, and let function c be your conjecture for a closed form in part (a). Use induction on q to prove $\forall q \in \mathbb{N}, c(3 q+r)=T(3 q+r)$.
If you did not find a sucessful conjecture for c in part (a), for up to $4 / 6$ marks you may show that $\forall q \in$ $\mathbb{N}, T(3 q+r) \geq 2^{q}$. If you choose this option we will not grade any attempt to earn the full $6 / 6$.
sample solution: (with suitable closed form) Define $P(q): T(3 q+r)=c(3 q+r)$. I will prove $\forall q \in \mathbb{N}, P(q)$ by simple induction on q.
base case(s): $c(3(0)+r)=2^{1}-1=1=T(r)$, since $r<3$. So $T(0)$ holds.
inductive step: Let $q \in \mathbb{N}$. Assume $P(q)$, then

$$
\begin{aligned}
T(3(q+1)+r) & =1+2 T(3 q+r) \quad \text { \# by definition, since } 3(q+1) \geq 3 \\
& =1+2 c(3 q+r)=1+2\left(2^{q+1}-1\right) \quad \text { \# by IH } \\
& =1+2^{q+2}-2=2^{(q+1)+1}-1=c(2(q+1)+r)
\end{aligned}
$$

So $P(n+1)$ follows.

- 1 mark for defining, or consistently re-stating, predicate
- 1 mark for verifying base case
- 2 mark for introducing q and IH
- 1 mark for using the IH, and saying where you use it
- 1 mark for reaching conclusion
weaker claim: Define $P(q): T(3 q+r) \geq 2^{q}$. I will prove $\forall q \in \mathbb{N}, P(q)$ by simple induction on q.
base case: By the definition of $T(3(0)+r)=1 \geq 1=2^{0}$, so $P(0)$ holds.
inductive step: Let $q \in \mathbb{N}$ and assume $P(q)$. I will show that $P(q+1)$ follows:

$$
\begin{aligned}
T(3(q+1)+r) & =1+2 T(3 q+r) \quad \text { \# by definition, since } 3(q+1) \geq 3 \\
& \geq 1+2 \times 2^{q} \quad \text { \# by } P(q) \\
& =1+2^{q+1} \geq 2^{q+1}
\end{aligned}
$$

So $P(q+1)$ follows

- 1 mark for defining, or consistently re-stating, predicate
- 1 mark for verifying base case
- 1 mark for introducing q and IH
- 1 mark for using the IH and reaching conclusion
(c) [4 marks] Prove that $\forall n \in \mathbb{N}^{+}, T(n)-T(n-1) \geq 0$. In other words, prove that T is nondecreasing on \mathbb{N}. You may assume, as a consequence of the Quotient/Remainder Theorem, that $\forall n \in \mathbb{N}, \exists q, r \in \mathbb{N}, n=3 q+r \wedge 3>r$.
sample solution: (without induction) Let $n \in \mathbb{N}$ and let $q, r \in \mathbb{N}, n=3 q+r \wedge 3>r$. There are two cases to consider:
case $r=0$: Then $n=3 q+0$ and $n-1=3(q-1)+2$, so

$$
\begin{align*}
T(n)-T(n-1) & =T(3 q+0)+T(3(q-1)+2)=c(3 q+0)+c(3(q-1)+2 \quad \text { \# by Q1(b) } \tag{b}\\
& =2^{q+1}-1-2^{q-1+1}+1=2^{q+1}-2^{q}=2^{q} \geq 0
\end{align*}
$$

case $r \in\{1,2\}$: Then $n=3 q+r$ and $n-1=3 q+r-1$, where $3>r-1 \geq 0$, so

$$
\begin{aligned}
T(n)-T(n-1) & =T(3 q+r)-T(3 q+r-1)=c(3 q+r)-c(3 q+r-1) \quad \text { \# by Q1(b) } \\
& =2^{q}-1-2^{q}+1=0 \geq 0
\end{aligned}
$$

In both possible cases $T(n)-T(n-1) \geq 0$

- 1 mark for introducing n in terms of $q \mathrm{r}$
- 1 mark for breaking into cases
- 1 mark for applying closed form
- 1 mark for getting inequality
alternative sample solution: (with induction) Define $P(n): T(n)-T(n-1) \geq 0$. I will prove $\forall n \in \mathbb{N}^{+}, P(n)$ by complete induction
inductive step: Let $n \in \mathbb{N}^{+}$and assume $\bigwedge_{i=1}^{i=n-1} P(i)$. I will show that $P(n)$ follows:
case $n \geq 4$:

$$
\begin{aligned}
T(n)-T(n-1) & =1+2 T(n-3)-1-2 T(n-4) \quad \text { \# since } n-1 \geq 3 \\
& =2(T(n-3)-T(n-4)) \geq 0 \quad \text { \# by } P(n-3), 1 \leq n-3<n
\end{aligned}
$$

case $1 \leq n \leq 3: T(1)-T(0)=1-1=0 \geq 0$, and $T(2)-T(1)=1-1=0 \geq 0$, and $T(3)-T(2)=3-1=2 \geq 0$, so $P(1), P(2)$, and $P(3)$ hold.
In all possible cases, $P(n)$ follows

- 1 mark for predicate
- 1 mark for three base cases
- 1 mark for assumptions
- 1 mark for inductive step

2. [5 marks] $(\approx 15$ minutes)

Read over function pal below:

```
def pal(a_list: list) -> list:
    """
    Return a palindrome list based on a_list.
    Precondition: a_list is a Python list.
    Postcondition: Returns a_list[ : ] + a_list [ : : -1], where a_list[ : : -1]
        is just a_list[ : ] in reverse order.
    """
    if len(a_list) < 1:
        return a_list[ : ]
    else:
        return a_list[0] + pal(a_list[1 : ]) + a_list[0]
```

Use induction on the size of a_list to prove that pal's precondition, plus execution, implies its postcondition. Assume that the reverse-stride slice $[1,2,3,4][::-1]$ returns $[4,3,2,1]$, that is the reverse of the original list.
sample solution: Define $P(n)$: For any list a_list with len(a_list) $=n$, pal(a_list) returns a_list[:] + a_list[: :-1]. I will prove $\forall n \in \mathbb{N}, P(n)$ by simple induction on n.
base case: By lines $9 \& 10 \mathrm{pal}([])$ returns [] $=[]+[::-1]$, so $P(0)$ holds.
inductive step: Let $n \in \mathbb{N}$. Assume $P(n)$. Let alist be a list with len(a_list) $=n+1$. Then by lines $11 \& 12$ pal(a_list) returns:

```
    a_list[0] + pal(a_list[1 : ]) + a_list[0]
```

which, by the inductive hypothesis, since len(a_list[1:])=n, is:
a_list[0] + a_list[1 :] + a_list[1 : : -1] + a_list [0]
... which is a_list [:] + a_list [: : -1]. So $P(n+1)$ follows.

- 1 mark for defining, or repeatedly re-stating, predicate
- 2 marks for introducing n and the inductive hypothesis
- 1 mark for using the inductive hypothesis, and making it clear that they have used it
- 1 mark for reaching conclusion

