UNIVERSITY OF TORONTO

Faculty of Arts and Science
term test \#2, Version 1
CSC236F
Date: Thursday November 15, 6:10-7:00pm
Duration: 50 minutes
Instructor(s): Danny Heap
Examination Aids: pencils, pens, erasers, drinks, snacks

first and last names:

utorid:

student number:

Please read the following guidelines carefully!

- Please write your name, utorid, and student number on the front of this exam.
- This examination has 2 questions. There are a total of 5 pages, DOUBLE-SIDED.
- Answer questions clearly and completely.
- You will receive 20% of the marks for any question you leave blank or indicate "I cannot answer this question."

Take a deep breath. This is your chance to show us

How much you've learned.
We WANT to give you the credit
Good luck!

1. [13 marks] (≈ 35 minutes)

Define $T(n)$ by:

$$
T(n)= \begin{cases}0 & \text { if } n<2 \\ n+T(n-2) & \text { if } n \geq 2\end{cases}
$$

(a) [3 marks] Let $q \in \mathbb{N}$ and let $r \in\{0,1\}$. Use the method of repeated substitution (unwinding) to find a conjecture for a closed form for $T(2 q+r)$, that is some function c, using a fixed number of elementary operations, such that $c(2 q+r)=T(2 q+r)$. You may assume that if $n \in \mathbb{N}^{+}$, then $\sum_{i=1}^{i=n} i=n(n+1) / 2$, if that assumption turns out to be useful.
sample solution: I notice that if $2 q+r-2=2(q-1)+r$, and that $T(r)=0$, so assuming $q \geq 1$ for the moment:

$$
\begin{aligned}
T(2 q+r) & =2 q+r+T(2(q-1)+r) \quad \text { \# definition of } T, q \geq 1 \\
& =2 q+r+2(q-1)+r+T(2(q-2)+r) \quad \text { \# definition of } T, n \geq 2 \\
& = \\
& =\vdots(\text { I see a pattern...) } \\
& = \\
& =\left(\sum_{i=1}^{i=q} 2 i+r\right)+T(2(q-q)+r)=q(q+1)+q r \quad \text { \# using assumed sum of series } \\
& =q(q+r+1)=c(2 q+r)
\end{aligned}
$$

This form also agrees with $T(2 q+r)$ when $q=0$, so I'll conjecture $c(q)=q(q+r+1)$

- 2 marks for 2 successful substitutions
- 0.5 marks for successful derivation with summation
- 0.5 marks for replacing the summation with closed form
(b) [6 marks] Let $r \in\{0,1\}$, and let function c be your conjecture for a closed form in part (a). Use induction on q to prove $\forall q \in \mathbb{N}, c(2 q+r)=T(2 q+r)$.
If you did not find a sucessful conjecture for c in part (a), for up to $4 / 6$ marks you may show that $\forall q \in$ $\mathbb{N}, T(2 q+r) \geq q^{2}$. If you choose this option we will not grade any attempt to earn the full $6 / 6$.
sample solution: (induction on q) I will prove this by induction on q. First, define $P(q): c(2 q+r)=T(2 q+r)$. base case: $T(2(0)+r)=0$ by the recurrence definition, since $r<2$. This agrees with $c(2(0)+r)=0(0+1+r)=$ 0 , so $P(0)$ holds.
inductive step: Let $q \in \mathbb{N}$, and assume $P(q)$. I will show that $P(q+1)$ follows.

$$
\begin{aligned}
T(2(q+1)+r) & =2(q+1)+r+T(2 q+r) \quad \text { \# since } 2(q+1) \geq 2 \\
& =2(q+1)+r+c(2 q+r)=2(q+1)+r+q(q+1+r) \quad \text { \# by IH, } P(q) \\
& =(2+q)(q+1)+(q+1) r=(q+1)((q+1)+1+r) \quad \text { \# algebra... } \\
& =c(2(q+1)+r)
\end{aligned}
$$

So $P(q+1)$ follows.

- 1 mark for defining, or consistently re-stating, predicate
- 1 mark for verifying base case
- 2 mark for introducing q and IH
- 1 mark for using the IH, and saying where you use it
- 1 mark for reaching conclusion
weaker claim $\forall q \in \mathbb{N}, T(2 q+r) \geq q^{2}$: Define $P(q): T(2 q+r) \geq q^{2}$. Prove by simple induction on q that $\forall q \in \mathbb{N}, P(q)$.
base cases: By the function definition $T(2(0)+0)=T(2(0)+1)=0 \geq 0^{2}$, so $P(0)$ holds.
inductive step: Let $q \in \mathbb{N}$. Assume $P(q)$. I will show that $P(q+1)$ follows.

$$
\begin{aligned}
T(2(q+1)+r) & =2(q+1)+r+T(2 q+r) \quad \text { \# since } q+1 \geq 1 \Rightarrow 2(q+1) \geq 2 \\
& \geq 2 q+2+r+q^{2} \quad \# \text { by IH } \\
& =q^{2}+2 q+1+(1+r) \geq(q+1)^{2} \quad \square \quad \# \text { since } 1+r \geq 0
\end{aligned}
$$

So $P(q+1)$ follows.

- 1 mark for defining, or consistently re-stating, predicate
- 1 mark for verifying base case
- 1 mark for introducing q and IH
- 1 mark for using the IH and reaching conclusion
(c) [4 marks] Prove that $\forall n \in \mathbb{N}^{+}, T(n)-T(n-1) \geq 0$. In other words, prove that T is nondecreasing on \mathbb{N}. You may assume, as a consequence of the Quotient/Remainder Theorem, that $\forall n \in \mathbb{N}, \exists q, r \in \mathbb{N}, n=2 q+r \wedge 2>r$. sample solution: (without induction) Let $n \in \mathbb{N}^{+}$. Let $q, r \in \mathbb{N}, 2 q+r=n \wedge 2>r$. There are two cases to consider
case $r=0$: Then $n=2 q+0$ and $n-1=2(q-1)+1$, so

$$
\begin{aligned}
T(n)-T(n-1)=T(2 q+0)-T(2(q-1)+1) & =c(2 q+1)-c(2(q-1)+0) \quad \text { \# by Q1(b) } \\
& =q(q+1+0)-(q-1)((q-1)+1+1) \\
& =q^{2}+q-q^{2}+1=q+1 \geq 0
\end{aligned}
$$

case $r=1$: Then $n=2 q+1$ and $n-1=2 q+0$, so

$$
\begin{aligned}
T(n)-T(n-1)=T(2 q+1)-T(2 q+0) & =c(2 q+1)-c(2(q-1)+0) \quad \text { \# by Q1(b) } \\
& =q(q+1+1)-q(q+1+0)=q^{2}+2 q-q^{2}-q=q \geq 0
\end{aligned}
$$

In both possible cases $T(n)-T(n-1) \geq 0$

- 1 mark for introducing n in terms of q r
- 1 mark for breaking into cases
- 1 mark for applying closed form
- 1 mark for getting inequality
alternative sample solution: (with induction) Define $P(n): T(n)-T(n-1) \geq 0$. I will prove $\forall n \in \mathbb{N}^{+}, P(n)$ by complete induction.
inductive step: Let $n \in \mathbb{N}^{+}$. Assume $\bigwedge_{i=1}^{i=n-1} P(i)$. I will prove that $P(n)$ follows.
case $n \geq 3$: Then

$$
\begin{aligned}
T(n)-T(n-1) & =n+T(n-2)-(n-1)-T(n-3) \quad \text { \# by definition, since } n-1 \geq 2 \\
& \geq n-(n-1)=1 \geq 0 \quad \text { b by IH, since } 1 \leq n-2<n
\end{aligned}
$$

So $P(n)$ follows in this case.
case $1 \leq n<3$ From the definition $T(1)-T(0)=0 \geq 0$ and $T(2)-T(1)=2 \geq 0$, so $P(1)$ and $P(2)$ hold.

- 1 mark for predicate
- 1 mark for two base cases
- 1 mark for assumptions
- 1 mark for inductive step

2. [5 marks] $(\approx 15$ minutes)

Read over function reversi below:

```
def reversi(a_list: list) -> list:
    """
    Return a copy of a_list reversed.
    Precondition: a_list is a Python list.
    Postcondition: Returns a_list[ : : -1], which is a_list [ : ]
            in reverse order
    """
    if len(a_list) < 1:
        return a_list[ : ]
    else:
        return reversi(a_list[1 : ]) + [a_list[0]]
```

Use induction on the size of a_list to prove that reversi's precondition, plus execution, implies its postcondition. Assume that the reverse-stride slice $[1,2,3,4][::-1]$ returns $[4,3,2,1]$, that is the reverse of the original list.
sample solution: Define $P(n)$: For any list a_list with len(a_list) $=n$, reversi(a_list) returns a_list[: : - 1$]$. I will prove $\forall n \in \mathbb{N}, P(n)$ by simple induction on n.
base case: By lines $9 \& 10$ reversi([]) returns [] $=[][::-1]$, so $P(0)$ holds.
inductive step: Let $n \in \mathbb{N}$. Assume $P(n)$. Let a_list be a list with len(a_list) $=n+1$. Then by lines $11 \& 12$ reversi(a_list) returns:

```
    reversi(a_list[1 : ]) + [a_list[0]]
```

which, by the inductive hypothesis, since len $($ a_list $[1:])=n$, is:
a_list[1: : -1] + [a_list[0]]
... which is a_list [: : -1]. So $P(n+1)$ follows.

- 1 mark for defining, or repeatedly re-stating, predicate
- 2 marks for introducing n and the inductive hypothesis
- 1 mark for using the inductive hypothesis, and making it clear that they have used it
- 1 mark for reaching conclusion

