UNIVERSITY OF TORONTO
Faculty of Arts and Science
term test \#1, Version 2
CSC236F
Date: Friday October 5, 11:10-12:00pm or 12:10-1:00pm
Duration: 50 minutes
Instructor(s): Danny Heap
Examination Aids: pencils, pens, erasers, drinks, snacks

first and last names:

utorid:

student number:

Please read the following guidelines carefully!

- Please write your name, utorid, and student number on the front of this exam.
- This examination has 3 questions. There are a total of 4 pages, DOUBLE-SIDED.
- Answer questions clearly and completely.
- You will receive 20% of the marks for any question you leave blank or indicate "I cannot answer this question."

Take a deep breath. This is your chance to show us

How much you've learned.
We WANT to give you the credit
Good luck!

1. [7 marks] $(\approx 10$ minutes)

Define $f(n)$ by:

$$
f(n)= \begin{cases}1 & \text { if } n=0 \\ 3 & \text { if } n=1 \\ 9 & \text { if } n=2 \\ f(n-1)+3 f(n-2)+9 f(n-3) & \text { if } n>2\end{cases}
$$

Define $P(n): f(n)=3^{n}$. Use complete induction to prove $\forall n \in \mathbb{N}, P(n)$. Be sure to introduce names, hypothesis, and all necessary cases. Also be sure to indicate when you use an inductive hypothesis, and why you are justified in using it.
sample solution: Proof by complete induction that $\forall n \in \mathbb{N}, f(n)=3^{n}$.
inductive step: Let $n \in \mathbb{N}$. Assume $\bigwedge_{i=0}^{i=n-1} f(i)=3^{i}$. I will prove that $P(n)$ follows, that is that $f(n)=3^{n}$.
case $n \geq 3$: Then

$$
\begin{aligned}
f(n) & =f(n-1)+3 f(n-2)+9 f(n-3) \quad \text { \# by definition, since } n>2 \\
& =3^{n-1}+3\left(3^{n-2}\right)+9\left(3^{n-3}\right) \\
& \quad \# \text { by } P(n-1), P(n-2), \text { and } P(n-3), n>n-1>n-2>n-3 \geq 0 \\
& =3^{n-1}+3^{n-1}+3^{n-1}=3^{n}
\end{aligned}
$$

So $P(n)$ follows in this case.
base cases $n<3$: By definition, $f(0)=1=3^{1}, f(1)=3=3^{1}$, and $f(2)=9=3^{2}$, so $P(n)$ holds in these cases. So $P(n)$ holds in all possible cases.
2. [7 marks] (≈ 20 minutes) Use contradiction and the Principle of Well Ordering to prove that there are no positive integers x, y, z, w such that $x^{4}+3 y^{4}+9 z^{4}=27 w^{4}$. Be sure to make it clear when you introduce any assumption(s), where you use the Principle of Well Ordering, and where you think you have derived a contradiction. You may assume, without proof, that $\forall p, k \in \mathbb{N}$, if p is prime and $p \mid k^{4}$, then $p \mid k$.
sample solution: Proof by contradiction and well-ordering that $\forall x, y, z, w \in \mathbb{N}^{+}, x^{4}+3 y^{4}+9 z^{4} \neq 27 w^{4}$.
Assume, for the sake of contradiction assume the negation, that $\exists x, y, z, w \in \mathbb{N}^{+}, x^{4}+3 y^{4}+9 z^{4}=27 w^{4}$. By this assumption I can construct a non-empty set $X=\left\{x \in \mathbb{N}^{+} \mid \exists y, z, w \in \mathbb{N}^{+}, x^{4}+3 y^{4}+9 z^{4}=27 w^{4}\right\}$. Since X is a non-empty subset of \mathbb{N}, it has a smallest element. Let $x_{0} \in \mathbb{N}^{+}$be the smallest element of X, with corresponding $y_{0}, z_{0}, w_{0} \in \mathbb{N}^{+}$such that $x_{0}^{4}+3 y_{0}^{4}+9 z_{0}^{4}=27 w_{0}^{4}$. Then

$$
\begin{aligned}
x_{0}^{4}+3 y_{0}^{4}+9 z_{0}^{4}=27 w_{0}^{4} & \Rightarrow x_{0}^{4}=27 w_{0}^{4}-\left(3 y_{0}^{4}+9 z_{0}^{4}\right) \\
& \Rightarrow 3\left|x_{0}^{4} \Rightarrow 3\right| x_{0} \quad \# \text { since } 3 \text { divides RHS and allowed assumption } \\
\text { Let } x_{1} \in \mathbb{N}^{+}, 3 x_{1}=x_{0} & \Rightarrow 81 x_{1}^{4}=27 w_{0}^{4}-\left(3 y_{0}^{4}+9 z_{0}^{4}\right) \\
& \Rightarrow 27 x_{1}^{4}=9 w_{0}^{4}-\left(y_{0}^{4}+3 z_{0}^{4}\right) \Rightarrow y_{0}^{4}=9 w_{0}^{4}-\left(3 z_{0}^{4}+27 x_{1}^{4}\right) \quad \text { \# divide by } 3 \\
& \Rightarrow 3\left|y_{0}^{4} \Rightarrow 3\right| y_{0} \quad \# \text { since } 3 \text { divides RHS and allowed assumption } \\
\text { Let } y_{1} \in \mathbb{N}^{+}, 3 y_{1}=y_{0} & \Rightarrow 81 y_{1}^{4}=9 w_{0}^{4}-\left(3 z_{0}^{4}+27 x_{1}^{4}\right) \\
& \Rightarrow 27 y_{1}^{4}=3 w_{0}^{4}-\left(z_{0}^{4}+9 x_{1}^{4}\right) \Rightarrow z_{0}^{4}=3 w_{0}^{4}-\left(9 x_{1}^{4}+27 y_{1}^{4}\right) \quad \text { \# divide by } 3 \\
& \Rightarrow 3\left|z_{0}^{4} \Rightarrow 3\right| z_{0} \quad \# \text { since } 3 \text { divides RHS and allowed assumption } \\
\text { Let } z_{1} \in \mathbb{N}^{+}, 3 z_{1}=z_{0} & \Rightarrow 81 z_{1}^{4}=3 w_{0}^{4}-\left(9 x_{1}^{4}+27 y_{1}^{4}\right) \\
& \Rightarrow 27 z_{1}^{4}=w_{0}^{4}-\left(3 x_{1}^{4}+9 y_{1}^{4}\right) \Rightarrow 3 x_{1}^{4}+9 y_{1}^{4}+27 z_{1}^{4}=w_{0}^{4} \quad \text { \# divide by } 3 \\
& \Rightarrow 3\left|w_{0}^{4} \Rightarrow 3\right| w_{0} \quad \# \text { since } 3 \text { divides LHS and allowed assumption } \\
\text { Let } w_{1} \in \mathbb{N}^{+}, 3 w_{1}=w_{0} & \Rightarrow 3 x_{1}^{4}+9 y_{1}^{4}+27 z_{1}^{4}=81 w_{1}^{4} \\
& \Rightarrow x_{1}^{4}+3 y_{1}^{4}+9 z_{1}^{4}=27 w_{1}^{4} \quad \# \text { divide by } 3
\end{aligned}
$$

So $x_{1} \in X$ and $x_{0}=3 x_{1}>x_{1} \longrightarrow \longleftarrow$ Contradiction, x_{0} is the smallest element of X. Since assuming $\exists x, y, z, w \in \mathbb{N}^{+}, x^{4}+3 y^{4}+9 z^{4}=27 w^{4}$ yields a contradiction, that assumption is false and:

$$
\forall x, y, z, w \in \mathbb{N}^{+}, x^{4}+3 y^{4}+9 z^{4} \neq 27 w^{4}
$$

3. [7 marks] $(\approx 20$ minutes) Define \mathcal{T} as the smallest set such that:
(a) ()$\in \mathcal{T}$
(b) If $t_{1}, t_{2} \in \mathcal{T}$, then $\left(t_{1} t_{2}\right) \in \mathcal{T}$

Some examples of elements of \mathcal{T} are ()$,(()())$, and $((()())())$. For $t \in \mathcal{T}$, define left (t) as the number of (characters in t. Define:

$$
P(t): \operatorname{left}(t) \text { is odd. }
$$

Use structural induction to prove $\forall t \in \mathcal{T}, P(t)$. Be sure to indicate the cases you present, when you introduce names, where you introduce assumptions, and when you have derived a conclusion.
sample solution: Proof by structural induction that $\forall t \in \mathcal{T}$, left (t) is odd.
basis: Let $t=()$. Then left $(t)=1=2 \times 0+1$, an odd number. So $P(t)$ holds.
inductive step: Let $t_{1}, t_{2} \in \mathcal{T}$ and assume $P\left(t_{1}\right)$ and $P\left(t_{2}\right)$. Let $j, k \in \mathbb{Z}$ such that $\operatorname{left}\left(t_{1}\right)=2 j+1$ and $\operatorname{left}\left(t_{2}\right)=2 k+1$.
Let $i \in \mathbb{Z}, i=j+k+1$. I will show that $P\left(\left(t_{1} t_{2}\right)\right)$ follows, that is $\operatorname{left}\left(\left(t_{1} t_{2}\right)\right)=2 i+1$, an odd number.

$$
\begin{aligned}
\operatorname{left}\left(\left(t_{1} t_{2}\right)\right) & =1+\operatorname{left}\left(t_{1}\right)+\operatorname{left}\left(t_{2}\right) \quad \text { \#exactly one new }(\text { added } \\
& =1+(2 j+1)+(2 k+1) \quad \# \text { by } P\left(t_{1}\right) \wedge P\left(t_{2}\right) \\
& =2(j+k+1)+1=2 i+1
\end{aligned}
$$

So $P\left(\left(t_{1} t_{2}\right)\right)$ follows in this case.

