CSC236 term test #2 November 2016

Last name:

First name:

utoronto.ca email:

Fill in your name and UofT email **clearly** and wait for the invigilator to announce the start before turning this page. You will receive 20% of any question you leave blank or say that you cannot answer. On the other hand, you will lose marks for false statements, or statements you make without justification. **1.** (10 pts) Consider the following recurrence relation:

$$T(n) = \begin{cases} 3 \\ T\left(\left\lceil \frac{n}{2} \right\rceil\right) * T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) & n > 2 \end{cases}$$

Use repeated substitution (aka unwinding) to make a conjecture of a closed-form expression for T(n) in the special case where n is a power of 2 (i.e., $\exists k > 0 \in \mathbb{N}, n = 2^k$). Then, prove your conjecture is true for n of the form 2^k .

- **2.** (8 pts) Assume we know that when $n = 2^{(2^k)}$ for some $k \in \mathbb{N}$, $S(n) = \lg \lg n + 3$. Show that S(n) is in $\Omega(\lg \lg n)$ for all $n > 1 \in \mathbb{N}$, not just special cases. **Hint:** you may use
 - i. *S* is monotonic non-decreasing
 - ii. $\forall n > 1 \in \mathbb{N}, \exists k \in \mathbb{N} \text{ such that } \sqrt{2^{(2^k)}} \le n \le 2^{(2^k)}$
 - iii. $\sqrt{2^{(2^k)}} = 2^{(2^{k-1})}$
 - iv. Since $n = 2^{(2^k)}$, $2^k = \lg n$ and $k = \lg \lg n$

Note. This question may take more time than the number of points assigned suggest.

- 3.
- a) (4 pts) Consider the following algorithm, and prove if the loop iterates at least *c* times, the following loop invariant holds at end of the *c*-th iteration.

$$LI(i_c, sum_c): 0 \le i_c \le \frac{n}{2}, i_c \in \mathbb{N} \text{ and } sum_c = \sum_{j=0}^{i_c-1} A[2j]$$

Note that sum of an empty list is zero, *i.e.*, $\sum_{j=0}^{-1} A[2j] = 0$.

- Algorithm avg(A) pre-: A is a list of real numbers, its index starts from 0 and its size, n, is 2k, ∃k > 0 ∈ N post-: return the average of numbers in positions divisible by 2
 i = 0
 sum = 0
 m = length(A)/2
 while i < m
 sum = sum + A[2 * i]
 i = i + 1
 a = sum/i
 return a
- **b)** (1 pts) Partial correctness: use the loop invariant above and prove the algorithm is correct, assuming it terminates.