1. (10 pts) Consider the following recurrence relation:

$$T(n) = \begin{cases} 3 \\ T\left(\left\lceil\frac{n}{2}\right\rceil\right) * T\left(\left\lfloor\frac{n}{2}\right\rfloor\right) & n > 2 \end{cases}$$

Use repeated substitution (aka unwinding) to make a conjecture of a closed-form expression for T(n) in the special case where n is a power of 2 (i.e., $\exists k > 0 \in \mathbb{N}, n = 2^k$). Then, prove your conjecture is true for n of the form 2^k .

Sample Solution.

When
$$n > 2$$

$$T(n) = T\left(\left[\frac{n}{2}\right]\right) * T\left(\left[\frac{n}{2}\right]\right) = T\left(\frac{n}{2}\right) * T\left(\frac{n}{2}\right) = T^{2}\left(\frac{n}{2}\right) \qquad \text{# since } n = 2^{k}$$

$$= T^{4}\left(\frac{n}{4}\right)$$

$$= T^{8}\left(\frac{n}{8}\right)$$

$$\dots$$

$$= T^{2^{k}}\left(\frac{n}{2^{k}}\right)$$

$$= T^{\frac{n}{2}}(2) \qquad \text{# when } 2^{k} = \frac{n}{2}$$

$$= 3^{\frac{n}{2}}$$

Proof by simple induction on *k*.

Basis step. $k = 1, n = 2^1 = 2$. $T(2) = 3 = 3^{\frac{2}{2}} = 3$.

Inductive step. Assume P(k) holds for an arbitrary $k > 0 \in N$. That means

$$T(2^k) = T^2\left(\frac{2^k}{2}\right) = T^2(2^{k-1}) = 3^{(2^{k-1})}$$

By using IH, we must show $T(2^{k+1}) = 3^{(2^k)}$.

$$T(2^{k+1}) = T^{2}\left(\frac{2^{k+1}}{2}\right)$$

= $T^{2}(2^{k})$
= $(3^{(2^{k-1})})^{2}$ # by IH.
= $3^{(2^{k-1})*2} = 3^{(2^{k})}$

- **2.** (8 pts) Assume we know that when $n = 2^{(2^k)}$ for some $k \in \mathbb{N}$, $S(n) = \lg \lg n + 3$. Show that S(n) is in $\Omega(\lg \lg n)$ for all $n > 1 \in \mathbb{N}$, not just special cases. **Hint:** you may use
 - i. *S* is monotonic non-decreasing
 - ii. $\forall n > 1 \in \mathbb{N}, \exists k \in \mathbb{N} \text{ such that } \sqrt{2^{(2^k)}} \le n \le 2^{(2^k)}$
 - iii. $\sqrt{2^{(2^k)}} = 2^{(2^{k-1})}$
 - iv. Since $n = 2^{(2^k)}$, $2^k = \lg n$ and $k = \lg \lg n$

Note that we want to show S(n) for all $n > 1 \in \mathbb{N}$ is in $\Omega(\lg \lg n)$.

Sample Solution.

Assume
$$\sqrt{2^{2^k}} \le n \le 2^{2^k}$$

 $S(n) \ge S\left(\sqrt{2^{2^k}}\right)$ # since S is non-decreasing
 $S(n) \ge \lg \lg \sqrt{2^{2^k}} + 3$
 $S(n) \ge \lg \lg 2^{(2^{k-1})} + 3$
 $S(n) \ge k - 1 + 3$
 $S(n) \ge k$
 $S(n) \ge \lg \lg n$ # since $k = \lg \lg n$

Note. This question may take more time than the number of points assigned suggest.

- 3.
- a) (4 pts) Consider the following algorithm, and prove if the loop iterates at least *c* times, the following loop invariant holds at end of the *c*-th iteration.

$$LI(i_c, sum_c): 0 \le i_c \le \frac{n}{2}, i_c \in \mathbb{N} \text{ and } sum_c = \sum_{j=0}^{i_c-1} A[2j]$$

Note that sum of an empty list is zero, *i.e.*, $\sum_{j=0}^{-1} A[2j] = 0$.

- 1. Algorithm avg(A)pre-: A is a list of real numbers, its index starts from 0 and its size, n, is 2k, $\exists k > 0 \in \mathbb{N}$ post-: return the average of numbers in positions divisible by 2 2. i = 03. sum = 04. m = length(A)/25. while i < m6. sum = sum + A[2 * i]7. i = i + 18. a = sum/i9. return a
- **b)** (1 pts) Partial correctness: use the loop invariant above and prove the algorithm is correct, assuming it terminates.

sample solution

a)

Proof by simple induction.

Basis step.

P(0) holds since if the loop iterates at least 0 times, i.e. before entering the loop:

$$0 \le i_0 = 0 \le \frac{n}{2}$$
, $i_0 = 0 \in \mathbb{N}$ and
 $Sum_c = 0 = \sum_{j=0}^{i_0 - 1} A[2j] = \sum_{j=0}^{-1} A[2j] = 0$

Inductive step.

Assume P(k) holds, *i.e.*, if the loop iterates at least k times, then $i_k \in \mathbb{N}$, $0 \le i_k \le \frac{n}{2}$ and $Sum_k = \sum_{j=0}^{i_k-1} A[2j]$. We must show $P(k) \to P(k+1)$.

Case 1: if the loop does not iterate k + 1 times, P(k + 1) is vacuously true. **Case 2:** If the loop iterates at least k + 1 times,

 $0 \leq i_k < m = \frac{n}{2}$ # by Line 5 Then. $Sum_{k+1} = Sum_k + A[2 * i_k]$ # at Line 6 $= \sum_{i=0}^{i_k-1} A[2i] + A[2*i_k]$ # by IH $=\sum_{j=0}^{i_{k+1}-1} A[2j]$ # since $i_k = i_{k+1} - 1$ Also, $i_{k+1} = i_k + 1$ # Line 7 # since $0 \le i_k < \frac{n}{2}$ and $i_K \in \mathbb{N}$ $0 \leq i_{k+1} \leq \frac{n}{2}$ Also, # since $i_K \in \mathbb{N}$, and $i_{k+1} = i_k + 1$, $i_{k+1} \in \mathbb{N}$

This completes the inductive step, as P(k + 1) holds.

Hence, if the loop iterates at least *c* times, the following loop invariant holds at end of the *c*-th iteration

b)

Sample solution.

Since the loop terminates and by LI $0 \le i_c \le \frac{n}{2}$ at end of iteration c, then $i_c = m = \frac{n}{2}$ when the loop exits. Also, by LI, when the loop exits:

 $Sum_{\frac{n}{2}} = \sum_{j=0}^{\frac{n}{2}-1} A[2j]$ which is sum of elements of A at positions divisible by 2, up to and including position n-2. The number of elements at positions divisible by 2 is $\frac{n}{2} = \frac{i_n}{2}$. The program returns $Sum_{\frac{n}{2}}^n / \frac{i_n}{2}$ which is the average by definition.

Hence, precondtions \rightarrow postconditions