CSC236 fall 2018

automata and languages

Danny Heap

heap@cs.toronto.edu / BA4270 (behind elevators) http://www.teach.cs.toronto.edu/~heap/236/F18/ 416-978-5899

Using Introduction to the Theory of Computation,
Chapter 7

Outline

FSAs (finite state automata)

notes

turnstile finite-state machine

what are the rules for turnstiles?

float machine

which strings are floats in Python?

states needed to classify a string

what state is a stingy vending machine in, based on coins? accepts only nickles, dimes, and quarters, no change given, and everything costs 30 cents... here's a useful toy

δ	0	5	10	15	20	25	≥ 30
n	5	10	15	20	25	≥ 30	≥ 30
d	10	15	20	25	≥ 30	≥ 30	≥ 30
q	25	≥ 30	≥ 30	≥ 30	≥ 30	≥ 30	≥ 30

integer multiples of 3

build an automaton with formalities...

quintuple: $(Q, \Sigma, q_0, F, \delta)$ Q is set of states, Σ is finite, non-empty alphabet, q_0 is start state F is set of accepting states, and $\delta: Q \times \Sigma \mapsto Q$ is transition function

We can extend $\delta: Q \times \Sigma \mapsto Q$ to a transition function that tells us what state a string s takes the automaton to:

$$\delta^*: Q { imes} \Sigma^* \mapsto Q \qquad \delta^*(q,s) = egin{cases} q & ext{if } s = arepsilon \ \delta(\delta^*(q,s'),a) & ext{if } s' \in \Sigma^*, \ a \in \Sigma, s = s'a \end{cases}$$

String s is accepted if and only if $\delta^*(q_0, s) \in F$, it is rejected otherwise.

example — an odd machine

devise a machine that accepts strings over $\{a, b\}$ with an odd number of as

Formal proof requires inductive proof of invariant:

$$\delta^*(E,s) = egin{cases} E & ext{if s has even number of $as} \ O & ext{if s has odd number of $as} \end{cases}$$

more odd/even: intersection

L is the language of binary strings with an odd number of as, and at least one b Devise a machine for L using product construction

more odd/even: union

L is the language of binary strings with an odd number of as, or at least one b Devise a machine that accepts L using product construction

more odd/even

L is the language of binary strings with an odd number of as, but even length Devise a machine for L using product construction

notes

