CSC236 fall 2018

languages: the last words

Danny Heap

heap@cs.toronto.edu / BA4270 (behind elevators)

http://www.teach.cs.toronto.edu/~heap/236/F18/416-978-5899

Using Introduction to the Theory of Computation,
Chapter 7

Outline

non-regular languages

need... more... power

notes

pumping lemma (see course notes, page 234)

If $L\subseteq \Sigma^*$ is a regular language, then there is some $n_L\in \mathbb{N}$ $(n_L$ depends on L) such that if $x\in L$ and $|x|\geq n_L$ then:

- ightharpoonup $\exists u,v,w\in\Sigma^*,x=uvw$
- |v| > 0
- $ightharpoonup |uv| \leq n_L$
- $ightharpoonup orall k \in \mathbb{N}, uv^kw \in L$

idea: if machine M(L) has $|Q|=n_L, \ x\in L \land |x|\geq n_L$, denote $q_i=\delta^*(q_0,x[:i])$, so x "visits" $q_0,q_1,...,q_L$ with the first n_L+1 prefixes of x... so there is at least one state that x "visits" twice (pigeonhole principle)

consequences of regularity

How about $L = \{1^n 0^n | n \in \mathbb{N}\}$

another approach...Myhill-Nerode

Consider how many different states $1^k \in \text{Prefix}(L)$ end up in...for various k

"real life" consequences...

- ▶ the proof of irregularity of $L = \{1^n0^n | n \in \mathbb{N}\}$ suggests a proof of irregularity of $L' = \{x \in \{0,1\}^* \mid x \text{ has an equal number of 1s and 0s}\}$ (explain... consider $L' \cap L(1*0*)$)
- ▶ a similar argument implies the irregularity of $L'' = \{x \in \Sigma^* \mid x \text{ has an equal number of } \langle div \rangle \text{ as of } \langle /div \rangle \text{ substrings} \},$ where $\Sigma = \{a, ..., z, \langle, \rangle, /\}...$ so html cannot be checked by a DFSA!
- ▶ what about $L''' = \{(w, w) \mid w \in \{0, 1\}^*\}$? What does this say about whether an FSA can check whether a pair of strings is equal?

How about $L = \{w \in \Sigma^* \mid |w| = p \land p \text{ is prime}\}$

a humble admission...

▶ at any point in time my computer, and yours, are DFSAs

▶ do the arithmetic...

however, we could dynamically add/access increasing stores of memory

PDA

- ▶ DFSA plus an infinite stack with finite set of stack symbols. Each transition depends on the state, (optionally) the input symbol, (optionally) a pop from stack
- ightharpoonup each transition results in a state, (optional) push onto stack design a PDA that accepts $L=\{1^n0^n\mid n\in\mathbb{N}\}.$

yet more power

► (informally) linear bounded automata: finite states, read/write a tape of memory proportional to input size, tape moves are one position L-to-R

▶ (informally) turing machine: finite states, read/write an infinite tape of memory, tape moves are one position L-to-R

Each machine has a corresponding grammar (e.g. $FSAs \leftrightarrow regexes$ (right-linear grammar))

review suggestions

- three hours, pencils, pens, erasers, caffeine, sugar
- ▶ I will announce some office hours during study period
- review: lecture slides, tutorial exercises and solutions, assignments and solutions
- ▶ invent questions similar to those in the previous bullet point, vary and extend the questions
- ▶ form: study groups to challenge each other
- ask: me about things that are still unclear
- ▶ if you still have time: look at previous exams for presentation andn length

notes

