CSC236 fall 2018

languages: the last words

...plus some exam review tips...

Danny Heap

heap@cs.toronto.edu / BA4270 (behind elevators)

http://www.teach.cs.toronto.edu/~heap/236/F18/416-978-5899

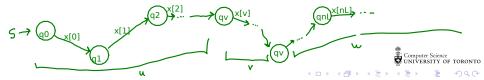
Using Introduction to the Theory of Computation, Chapter 7

Outline

non-regular languages

need... more... power

notes


pumping lemma (see course notes, page 234)

If $L\subseteq \Sigma^*$ is a regular language, then there is some $n_L\in \mathbb{N}$ $(n_L$ depends on L) such that if $x\in L$ and $|x|\geq n_L$ then:

- ightharpoonup $\exists u, v, w \in \Sigma^*, x = uvw$
- |v| > 0
- $ightharpoonup |uv| \leq n_L$
- $\blacktriangleright \ \forall k \in \mathbb{N}, uv^k w \in L$

The magic number nL is the number of states in some DFSA that allegedly accepts L...

idea: if machine M(L) has $|Q|=n_L$, $x\in L \land |x|\geq n_L$, denote $q_i=\delta^*(q_0,x[:i])$, so x "visits" $q_0,q_1,...,q_L$ with the first n_L+1 prefixes of x... so there is at least one state that x "visits" twice (pigeonhole principle)

consequences of regularity

How about $L = \{1^n 0^n | n \in \mathbb{N}\}$

Assume, for the sake of contradiction, that L is regular. Then there must be a machine M that accepts L. M has |Q| = m > 0 states. Consider $1 \cap 0 \cap m$. Then, but the pumping lemma, $1 \cap 0 \cap m = uvw$, where |uv| < m and |v| > 0 and for all k \in \N, $uv \cap kw \setminus n$ L. But then $uvvw \setminus n$ L, and $uvvw \setminus n = m + |v|$ 1s followed by m 0s --><--- contradiction, elements of L have same number of 1s and 0s.

Since assuming L is regular led to a contradiction, that assumption is false.

another approach...Myhill-Nerode

Consider how many different states $1^k \in \text{Prefix}(L)$ end up in...for various k

Assume, for the sake of contradiction, that L is regular. Then there is a machine M that accepts L, and M has some number of states, say |Q| = m. Consider the prefixes 1^0 , 1^1 , ..., 1^1 . Since there are m+1 of these, at least two drive M to the same state, so there are 0 <= h < i <= m such that 1^1 and 1^1 drive M to the same state. But then 1^1 and 1^1 both drive the machine to the same state, and 1^1 hoh should be accepted, whereas 1^1 hoh should not (inot = h). --->

Since assuming that L is regular led to a contradiction, that assumption is false.

"real life" consequences...

- ▶ the proof of irregularity of $L = \{1^n0^n | n \in \mathbb{N}\}$ suggests a proof of irregularity of $L' = \{x \in \{0,1\}^* \mid x \text{ has an equal number of 1s and 0s}\}$ (explain... consider $L' \cap L(1*0*)$)
- ▶ a similar argument implies the irregularity of $L'' = \{x \in \Sigma^* \mid x \text{ has an equal number of } \langle div \rangle \text{ as of } \langle /div \rangle \text{ substrings} \},$ where $\Sigma = \{a, ..., z, \langle, \rangle, /\}...$ so html cannot be checked by a DFSA!
- ▶ what about $L''' = \{(w, w) \mid w \in \{0, 1\}^*\}$? What does this say about whether an FSA can check whether a pair of strings is equal?

How about $L = \{w \in \Sigma^* \mid |w| = p \land p \text{ is prime}\}$

Assume, for the sake of contradiction, that L is regular. So there is some machine M with m=|Q| states that accepts L. Let p be a prime that is no smaller than m. Then 1^p has length >=m and $1^p=uvw$ where |v|>0 and $uv^kw \in L$ for all natural numbers k. Then $uv^{1+p}w \in L$ have $1+pw \in L$ have $1+pw \in L$ and $1+pw \in L$ have $1+pw \in L$ h

By assuming L is regular we arrived at a contradiction, so that assumption is false!

a humble admission...

▶ at any point in time my computer, and yours, are DFSAs that is, a snapshot of your computing power...

▶ do the arithmetic...

My laptop has 66108489728 bits of ram and 843585945600 bits of disk storage, so it can be in $2^{66108489728} + 843585945600$ } different states. Big, but finite... (of course I didn't count GPUs, various registers and cashes, and other peripherals, but the result is the same...)

however, we could dynamically add/access increasing stores of memory

i.e., run over to Spadina and College and buy some more RAM as needed by a computation...

PDA

- ▶ DFSA plus an infinite stack with finite set of stack symbols. Each transition depends on the state, (optionally) the input symbol, (optionally) a pop from stack See p 252 course notes.
- each transition results in a state, (optional) push onto stack

design a PDA that accepts $L = \{1^n0^n \mid n \in \mathbb{N}\}.$

a context-free grammar (set of production rules) that recognizes this language

S -> 1S0

S -> \varepsilon

yet more power

(informally) linear bounded automata: finite states, read/write a tape of memory proportional to input size, tape moves are one position L-to-R

Some people claim this is a realistic model of current computers...

▶ (informally) turing machine: finite states, read/write an infinite tape of memory, tape moves are one position L-to-R

 \dots but most treat this as the benchmark for what is computable...

Each machine has a corresponding grammar (e.g. FSAs↔regexes (right-linear grammar))

review suggestions

- three hours, pencils, pens, erasers, caffeine, sugar put everything else underneath your desk during exam...
- ► I will announce some office hours during study period
 Dec 14 1--3, December 17 2--4:30, December 18 2--4...
- review: lecture slides, tutorial exercises and solutions, assignments and solutions

These were my inspiration when designing questions... *not* previous exams...

- ▶ invent questions similar to those in the previous bullet point, vary and extend the questions

 Try to design questions that take 15--30 minutes to solve...
- ► form: study groups to challenge each other social skills, social skills... you need these!
- ask: me about things that are still unclear come to office hours, above
- ▶ if you still have time: look at previous exams for presentation andn length

chances are very small that I'll repeat an old question...

notes

