CSC236 fall 2018

machines, expressions: equivalence

Danny Heap

heap@cs.toronto.edu / BA4270 (behind elevators)

http://www.teach.cs.toronto.edu/~heap/236/F18/ 416-978-5899

Using Introduction to the Theory of Computation,
Chapter 7

Outline

regular expressions, regular languages

notes

non-deterministic FSA (NFSA) example

FSA that accepts $L((010 + 01)^*)$

NFSAs are real

...you can always convert them to DFSA

Use subset construction, notes page 219 if $\Sigma = \{0, 1\}$, the construction is, roughly

- ightharpoonup start at the start state combined with any states reachable from start with ε -transitions
- ▶ if there are any 1-transitions from this new combined start state, combine them into a new state
- ▶ there are any 0-transitions from this new combined start, combine them into a new state
- repeat for every state reachable from the start...

NFSA that accepts L((0+10)(0+10)*) construct the corresponding DFSA...

NFSA that accepts Rev(L((0+10)(0+10)*)) construct the corresponding DFSA...

FSAs, regexes are equivalent:

L=L(M) for some DFSA $M\Leftrightarrow L=L(M')$ for some NFSA $M'\Leftrightarrow L=L(R)$ for some regular expression R step 1.0: convert L(R) to L(M')

start with \emptyset , ε , $a \in \Sigma$

equivalence... step 1.5: convert L(R) to L(M'):

union, concatenation, stars

equivalence...

step 2: convert L(M') to L(M)

use subset construction

there could be $2^{|Q|}$ subsets to consider, but often many are unreachable and may be ignored...

FSAs, regexes are equivalent:

L=L(M) for some DFSA $M\Leftrightarrow L=L(M')$ for some NFSA $M'\Leftrightarrow L=L(R)$ for some regular expression R step 3: convert L(M) to L(R), eliminate states

equivalence...

state elimination recipe for state q

- 1. $s_1
 ldots s_m$ are states with transitions to q, with labels $S_1
 ldots S_m$
- 2. $t_1 \ldots t_n$ are states with transitions from q, with labels $T_1 \ldots T_n$
- 3. Q is any self-loop on q
- 4. Eliminate q, and add (union) transition label $S_i Q^* T_j$ from s_i to t_j .

regular languages closure

Regular languages are those that can be denoted by a regular expression or accept by an FSA. In addition:

ightharpoonup L regular $\Rightarrow \overline{L}$ regular

▶ $L \text{ regular} \Rightarrow Rev(L) \text{ regular}$

pumping lemma (see course notes, page 234)

If $L\subseteq \Sigma^*$ is a regular language, then there is some $n_L\in \mathbb{N}$ $(n_L$ depends on L) such that if $x\in L$ and $|x|\geq n_L$ then:

- ightharpoonup $\exists u,v,w\in\Sigma^*,x=uvw$
- |v| > 0
- $ightharpoonup |uv| < n_L$
- $ightharpoonup \forall k \in \mathbb{N}, uv^k w \in L$

idea: if machine M(L) has $|Q|=n_L$, $x\in L \land |x|\geq n_L$, denote $q_i=\delta^*(q_0,x[:i])$, so x "visits" $q_0,q_1,...,q_L$ with the first n_L+1 prefixes of x... so there is at least one state that x "visits" twice (pigeonhole principle)

consequences of regularity

How about $L = \{1^n 0^n | n \in \mathbb{N}\}$

How about $L = \{w \in \Sigma^* \mid |w| = p \land p \text{ is prime}\}$

notes

