#### CSC236 fall 2018

machines, expressions: equivalence

Danny Heap

heap@cs.toronto.edu / BA4270 (behind elevators)

http://www.teach.cs.toronto.edu/~heap/236/F18/ 416-978-5899

Using Introduction to the Theory of Computation,
Chapter 7





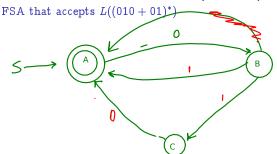
### Outline

regular expressions, regular languages

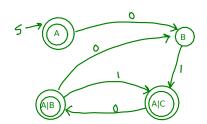
notes



## non-deterministic FSA (NFSA) example



from start, diagram transitions to \*sets of states\* that could be reached. Any set of states that contains at least one accepting state becomes an accepting state. The new machine is deterministic --- DFSA.







#### NFSAs are real

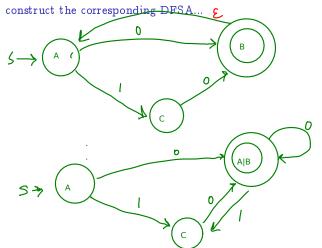
...you can always convert them to DFSA

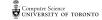
Use subset construction, notes page 219 if  $\Sigma = \{0, 1\}$ , the construction is, roughly

- ightharpoonup start at the start state combined with any states reachable from start with  $\varepsilon$ -transitions
- ▶ if there are any 1-transitions from this new combined start state, combine them into a new state
- ▶ there are any 0-transitions from this new combined start, combine them into a new state
- repeat for every state reachable from the start...

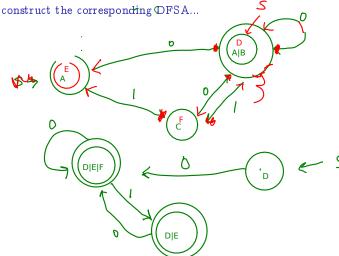


# NFSA that accepts L((0 + 10)(0 + 10)\*)



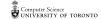


# NFSA that accepts Rev(L((0+10)(0+10)\*))



- swap start and accepting state (epsilon if multiple starts)
- 2. reverse all transitions

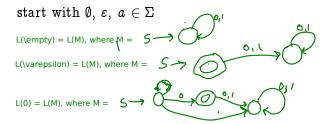
I re-named the states to D (was A|B) E (was A) and F (was C) to reduce confusing notation during the subset construction...



## FSAs, regexes are equivalent:

L=L(M) for some DFSA  $M\Leftrightarrow L=L(M')$  for some NFSA  $M'\Leftrightarrow L=L(R)$  for some regular expression R step 1.0: convert L(R) to L(M')

for concreteness, let's say  $Sigma = \{0, 1\}$ 



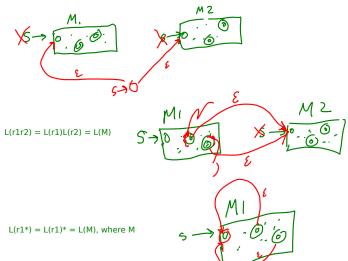


## equivalence...

Assume r1, r2  $\in$  RE, and that L(r1) = L(M1), L(r2) = L(M2), where M1. M2 are FSA

step 1.5: convert L(R) to L(M'): union, concatenation, stars

 $L(r1+r2) = L(r1) \setminus L(r2) = L(M)$  either uses the product construction OR



## equivalence...

step 2: convert L(M') to L(M)

use subset construction

there could be  $2^{|Q|}$  subsets to consider, but often many are unreachable and may be ignored...

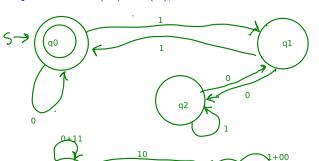
## FSAs, regexes are equivalent:

L = L(M) for some DFSA  $M \Leftrightarrow L = L(M')$  for some NFSA  $M' \Leftrightarrow$ 

L = L(R) for some regular expression R

step 3: convert L(M) to L(R), eliminate states

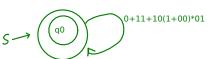
01



eliminate state 2

eliminate state 1

accepts:



our regex: (0+11+10(1+00)\*01)\*



# equivalence...

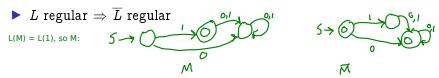
#### state elimination recipe for state q

label transitions with \*regexes\* rather than symbols

- 1.  $s_1 
  ldots s_m$  are states with transitions to q, with labels  $S_1 
  ldots S_m$
- 2.  $t_1 ldots t_n$  are states with transitions from q, with labels  $T_1 ldots T_n$
- 3. Q is any self-loop on q
- 4. Eliminate q, and add (union) transition label  $S_i Q^* T_j$  from  $s_i$  to  $t_j$ .

## regular languages closure

Regular languages are those that can be denoted by a regular expression or accept by an FSA. In addition:



ightharpoonup L regular  $\Rightarrow Rev(L)$  regular

We did an example earlier...

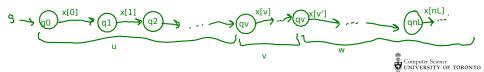


## pumping lemma (see course notes, page 234)

If  $L\subseteq \Sigma^*$  is a regular language, then there is some  $n_L\in \mathbb{N}$   $(n_L$  depends on L) such that if  $x\in L$  and  $|x|\geq n_L$  then:

- ightharpoonup  $\exists u, v, w \in \Sigma^*, x = uvw$
- |v| > 0
- $ightharpoonup |uv| \leq n_L$
- $ightharpoonup \forall k \in \mathbb{N}, uv^k w \in L$

idea: if machine M(L) has  $|Q|=n_L$ ,  $x\in L \land |x|\geq n_L$ , denote  $q_i=\delta^*(q_0,x[:i])$ , so x "visits"  $q_0,q_1,...,q_L$  with the first  $n_L+1$  prefixes of x... so there is at least one state that x "visits" twice (pigeonhole principle)



## consequences of regularity

How about  $L = \{1^n 0^n | n \in \mathbb{N}\}$ 

How about  $L = \{w \in \Sigma^* \mid |w| = p \land p \text{ is prime}\}$ 

### notes

