CSC236 fall 2018

languages: definitions

Danny Heap

heap@cs.toronto.edu / BA4270 (behind elevators) http://www.teach.cs.toronto.edu/~csc236h/fall/ 416-978-5899

Using Introduction to the Theory of Computation,
Chapter 7

Outline

formal languages

regular expressions

NFSAs

notes

some definitions

alphabet: finite, non-empty set of symbols, e.g. $\{a, b\}$ or $\{0, 1, -1\}$. Conventionally denoted Σ .

string: finite (including empty) sequence of symbols over an alphabet: abba is a string over $\{a, b\}$.

Convention: ε is the empty string, never an allowed symbol, Σ^* is set of all strings over Σ .

language: Subset of Σ^* for some alphabet Σ . Possibly empty, possibly infinite subset. E.g. $\{\}$, $\{aa, aaa, aaaa, ...\}$.

N.B.: $\{\} \neq \{\varepsilon\}$.

Many problems can be reduced to languages: logical formulas, identifiers for compilation, natural language processing. Key question is recognition:

Given language L and string s, is $s \in L$?

Languages may be described either by descriptive generators (for example, regular expressions) or procedurally (e.g. finite state automata)

more notation — string operations

string length: denoted |s|, is the number of symbols in s, e.g. |bba| = 3.

s = t: if and only if |s| = |t|, and $s_i = t_i$ for $0 \le i < |s|$.

 s^R : reversal of s is obtained by reversing symbols of s, e.g. $1011^R = 1101$.

st or $s \circ t$: concatenation of s and t — all characters of s followed by all those of t, e.g. $bba \circ bb = bbabb$.

 s^k : denotes s concatenated with itself k times. E.g., $ab^3 = ababab$, $101^0 = \varepsilon$.

 Σ^n : all strings of length n over Σ , Σ^* denotes all strings over Σ .

language operations

 \overline{L} : Complement of L, i.e. $\Sigma^* - L$. If L is language of strings over $\{0,1\}$ that start with 0, then \overline{L} is the language of strings that begin with 1 plus the empty string.

 $L \cup L'$: union

 $L \cap L'$: intersection

L - L': difference

Rev(L): = $\{s^R : s \in L\}$

concatenation: LL' or $L\circ L'=\{rt|r\in L,t\in L'\}$. Special cases $L\{\varepsilon\}=L=\{\varepsilon\}L$, and $L\{\}=\{\}=\{\}L$.

more language operations

exponentiation:
$$L^k$$
 is concatenation of L k times. Special case, $L^0 = \{ \varepsilon \}$, including $L = \{ \}$ (!)

Kleene star: $L^* = L^0 \cup L^1 \cup L^2 \cup \dots$

another way to define languages

In addition to the language accepted by DFSA L(M) and set description $L = \{...\}$.

Definition: The regular expressions (regexps or REs) over alphabet Σ is the smallest set such that:

- 1. \emptyset , ε , and x, for every $x \in \Sigma$ are REs over Σ
- 2. if T and S are REs over Σ , then so are:
 - ightharpoonup (T+S) (union) lowest precedence operator
 - ▶ (TS) (concatenation) middle precedence operator
 - ► T* (star) highest precedence

regular expression to language:

The L(R), the language denoted (or described) by R is defined by structural induction:

Basis: If R is a regular expression by the basis of the definition of regular expressions, then define L(R):

- ▶ $L(\emptyset) = \emptyset$ (the empty language no strings!)
- $L(\varepsilon) = \{\varepsilon\}$ (the language consisting of just the empty string)
- ▶ $L(x) = \{x\}$ (the language consisting of the one-symbol string)

Induction step: If R is a regular expression by the induction step of the definition, then define L(R):

- $\blacktriangleright L(S+T)=L(S)\cup L(T)$
- ightharpoonup L(ST) = L(S)L(T)
- $L(T^*) = L(T)^*$

regexp examples

- csc207 regex practice
- regex crosswords
- ▶ command-line REs
- $L(0+1) = \{0,1\}$
- ▶ $L((0+1)^*)$ All binary strings over $\{0,1\}$
- $L((01)^*) = \{\varepsilon, 01, 0101, 010101, \ldots\}$
- ▶ L(0*1*) 0 or more 0s followed by 0 or more 1s.
- ▶ $L(0^* + 1^*)$ 0 or more 0s or 0 or more 1s.
- ▶ $L((0+1)(0+1)^*)$ Non-empty binary strings over $\{0,1\}$.

example

 $L = \{x \in \{0,1\}^* \mid x \text{ begins and ends with a different bit}\}$

RE identities

some of these follow from set properties... others require some proof (see 7.2.5 example)

- ightharpoonup communitativity of union: $R+S\equiv S+R$
- ▶ associativity of union: $(R + S) + T \equiv R + (S + T)$
- associativity of concatenation: $(RS)T \equiv R(ST)$
- ▶ left distributivity: $R(S + T) \equiv RS + RT$
- ▶ right distributivity: $(S + T)R \equiv SR + TR$
- ▶ identity for union: $R + \emptyset \equiv R$
- ▶ identity for concatenation: $R\varepsilon \equiv R \equiv \varepsilon R$
- ▶ annihilator for concatenation: $\emptyset R \equiv \emptyset \equiv R\emptyset$
- ▶ idempotence of Kleene star: $(R^*)^* \equiv R^*$

non-deterministic FSA (NFSA) example

FSA that accepts $L((010 + 01)^*$

convenient!

non-deterministic FSA (NFSA) example

FSA that accepts $L((010 + 01)^*$

NFSAs are real

...you can always convert them to DFSA

Use subset construction, notes page 219

notes

