CSC236 fall 2018

theory of computation

```
second-best method:
csc236-2018-09@cs.toronto.edu
or (for course content)

heap@cs.toronto.edu

http://www.teach.cs.toronto.edu/~heap/236/F18/

416-978-5899
not the best method:
face-to-face after lecture, at office hour, in office

best method:
face-to-face after lecture, at office hour, in office

heap@cs.toronto.edu/~heap/236/F18/
```

use Introduction to the Theory of Computation, Section 1.2

Outline

introduction

chaper 1, simple induction

induction trap

Notes

why reason about computing?

> you're not just hackers anymore...

sometimes you need to analyze code *before* it run... sometimes it will never be run

can you test everything?

there are infinitely many integer, string, list inputs...

► careful, you might get to like it... (?!*)

it's happened before...

how to reason about computing

▶ it's messy...

you need to draft, re-draft, ..., many drafts you need to follow, and often abandon, blind alleys

it's art...

strive for correctness, clarity, surprise, humour, pathos...

how to do well

read the course information sheet as a two-way promise

▶ question, answer, record, synthesize

you could annotate the blank, aka vanilla, slides

► collaborate with respect

choose respectful collaborators who will challenge your ideas

we behave as though you already know...

- ► Chapter 0 material from Introduction to Theory of Computation
- ▶ CSC165 material, especially proofs and big-Oh material
- ▶ But you can relax the structure a little (more on this later)
- recursion, efficiency material from CSC148

by December you'll know...

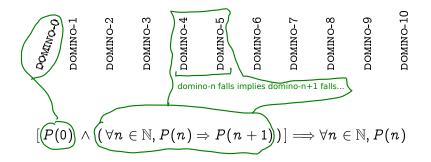
understand, and use, several flavours of induction impress your friends...

complexity and correctness of programs — both recursive and iterative

proofs by induction...

► formal languages, regular languages, regular expressions first taste of formal language theory...

domino fates foretold



If the initial case works, and each case that works implies its successor works, then all cases work

simple induction outline

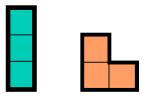
```
inductive step: introduce n and inductive hypothesis H(n) derive conclusion C(n): show that C(n) follows from H(n), indicating where you use H(n) and why that is valid
```

verify base case(s): verify that the claim is true for any cases not covered in the inductive step

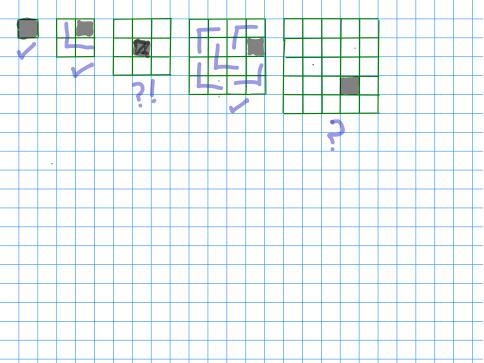
in simple induction C(n) is just H(n+1)

trominoes

see https://en.wikipedia.org/wiki/Tromino



Can an $n \times n$ square grid, with one subsquare removed, be tiled (covered without overlapping) by "chair" trominoes?



trominoes

P(n) a $2^n \times 2^n$ square grid, with one subsquare removed, can be tiled (covered without overlapping) by "chair" trominoes?

base case: let's argue about where to start...

A $2^0 \times 2^0$ square grid with one arbitrary subsquare removed is simply... empty space! So it can be tiled with... zero chairs. This verifies P(0).

trominoes

P(n) a $2^n \times 2^n$ square grid, with one subsquare removed, can be tiled (covered without overlapping) by "chair" trominoes?

inductive step:

Let n be an aribitary, fixed, natural number. Assume P(n), that is a $2^n \times 2^n$ square grid with one arbitrary subsquare removed can be tiled with chairs. I will prove P(n+1), that is a 2^n+1 square grid with one arbitrary subsquare removed can be tiled with chairs.

Let G be a $2^{n+1} \times 2^{n+1}$ square grid with one subsquare removed. Notice that G can be decomposed into $42^n \times 2^n$ disjoint quadrant grids. We may assume, without loss of

generality (WLOG), that the removed subsquare is in the upper-right quadrant, since we can always rotate G to make it so, and then rotate G back after we've tiled it.

By P(n) we can tile the upper-right quadrant, minus the missing square, with chairs f

By P(n) we can tile the upper-right quadrant, minus the missing square, with chairs.f By P(n) three more times, we can tile the remaining quadrants, omitting for a moment the subsquares of each that are adjacent to the centre of G, with chairs.

The briefly omitted three subsquare form a chair, so we can complete the tiling of G (minus that original missing square) by chairs. So P(n+1) follows.

$3^n \ge n^3$?

scratch work: check for a few values of n

```
3^0 = 1 >= 0 = 0^3...okay!

3^1 = 3 >= 1 = 1^3...okay!

3^2 = 9 >= 8 >= 2^3...okay!

3^3 = 27 >= 27 = 3^3...okay!

3^4 = 81 >= 64 = 4^3...okay!

3^{1} = 1/3 >= -1 = -1^3...okay!!

3^2 -1 = 1/3...okay!!
```

scope of n restricted here...

Let n be an arbitrary, fixed, natural number that is no smaller than 3. Assume P(n), that is $3^n > = n^3$. I will prove that P(n+1) follows. that is $3^n + 1 > = (n+1)^3$.

 $3^{n+1} = 3 \times 3^{n} >= 3 \times n^{3}$, by P(n) $= n^{3} + n^{3} + n^{3}$ $>= n^{3} + 3n^{2} + n^{3}$ # since n >= 3 $>= n^{3} + 3n^{2} + 3n + 6n$ # since n >= 3 $>= n^{3} + 3n^{2} + 3n + 1$ # n >= 3 => 6n >= 1 $= (n+1)^{3}$ # by binomial theorem That is, P(n+1) follows. base cases are those natural numbers that cannot be reached by inductive step, so P(0), P(1), P(2), and P(3). Of these, only P(3) helps in inductive step!

For every $n \in \mathbb{N}$, $12^n - 1$ is a multiple of 11

scratch work: substitute a few values for n

For every $n \in \mathbb{N}, 12^n-1$ is a multiple of 11 use the simple induction outline

For every $n \in \mathbb{N}, 12^n-1$ is a multiple of 11 use the simple induction outline

The units digit of 7^n is one of 1, 3, 7, or 9

scratch work: substitute a few values for n

The units digit of 7^n is one of 1, 3, 7, or 9 use the simple induction outline

The units digit of 7^n is one of 1, 3, 7, or 9 use the simple induction outline

What about: the units digit of 7^n is one of 1, 2, 3, 7, or 9

use the simple induction outline

is the claim still true? What happens if you add this other case to the inductive step?

how not to do simple induction

does a graph G = (V, E) with |V| > 0 have |E| = |V| - 1?

base case: easy

inductive step: what happens if you try to extend an arbitrary graph with |V| = n to one with |V'| = n + 1?

variations: what happens if you restrict the claim to connected graphs? what about acyclic connected graphs?

take-home: decompose rather than construct... except in structural induction (later)

Notes