CSC236 Fall 2018

Assignment #3: formal languages due November 30th, 3 p.m.

The aim of this assignment is to give you some practice with formal languages, FSAs, and regular expressions. Your assignment must be typed to produce a PDF document a3.pdf (hand-written submissions are not acceptable). You may work on the assignment in groups of 1 or 2, and submit a single assignment for the entire group on MarkUs

1. Let $x \in \mathbb{N}$. Prove that term(x) (below) terminates. Hint: Trace the values of x and y for a few different inputs, then devise a loop invariant that helps prove termination.

```
def term(x):
y = x**3
while y != 0:
    x = x - 1
    y = y - 3*x*x - 3*x - 1
```

- 2. Let $\Sigma = \{a,b\}$, $L_a = \{a^k \mid k \in \mathbb{N}\}$, $L_b = \{b^j \mid j \in \mathbb{N}\}$, and $L_2 = \{x \in \{a,b\}^* \mid |x| \text{ is even}\}$. Do not draw the machines below. Specify them with the quintuple $(Q, \Sigma = \{a,b\}, \delta, Q_0, F)$, where transition function δ is a table with symbols on the rows and states on the columns.
 - (a) Construct DFA M_a such that $L(M_a) = L_a$. Be sure to include all states, including dead states. Devise a state invariant for M_a and use it to prove that M_a accepts L_a .
 - (b) Construct DFA M_b such that $L(M_b) = L_b$. Be sure to include all states, including dead states. Devise a state invariant for M_b and use it to prove that M_b accepts L_b .
 - (c) Construct DFA M_2 such that $L(M_2) = L_2$. Be sure to include all states, including dead states. Devise a state invariant for M_2 and use it to prove that M_2 accepts L_2 .
 - (d) Construct DFA $M_{a|b}$ such that $L(M_{a|b}) = L_a \cup L_b$. Use the product construction from week 9 slides. Explain how you can use the proofs for M_a and M_b to establish that $M_{a|b}$ accepts $L_a \cup L_b$.
 - (e) Construct DFA $M_{a|b \text{ even}}$ such that $L(M_{a|b \text{ even}}) = (L_a \cup L_b) \cap L_2$. Explain how you can use the proofs for the preceding machine to establish that $M_{a|b \text{ even}}$ accepts $(L_a \cup L_b) \cap L_2$.
- 3. Let $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $L_0 = \{x \in \Sigma^* \mid x \text{ represents a number equivalent to 0 mod 3 in base 10}\}$, $L_1 = \{x \in \Sigma^* \mid x \text{ represents a number equivalent to 1 mod 3 in base 10}\}$, and $L_2 = \{x \in \Sigma^* \mid x \text{ represents a number equivalent to 2 mod 3 in base 10}\}$. Construct M_0 that accepts $L_0 \cup \{\varepsilon\}$, M_1 that accepts L_1 and M_2 that accepts L_2 , being sure that each machine has exactly 3 states. Do **not** draw your machines, specify them with a quintuple.

Now use the structure of your machines to explain why $L_0 = \text{Rev}(L_0)$, $L_1 = \text{Rev}(L_1)$, and $L_2 = \text{Rev}(L_2)$

- 4. Let \mathcal{RE} be the set of regular expressions over the alphabet $\Sigma = \{0,1\}$. Use structural induction on \mathcal{RE} to prove:
 - $\forall r \in \mathcal{RE}, \exists r' \in \mathcal{RE}, \mathsf{Rev}(\mathcal{L}(r)) = \mathcal{L}(r')$
 - (b) Using the definition of Prefix(L) in Exercise 11 at the end of Chapter 7:

$$\forall r \in \mathcal{RE}, \exists r' \in \mathcal{RE}, \operatorname{Prefix}(\mathcal{L}(r)) = \mathcal{L}(r')$$

- (c) If $r \in \mathcal{RE}$ does not contain the Kleene star, then |L(r)| is finite.
- 5. Let $\Sigma = \{a,b,c\}$ and $L_{R4} = \{x \in \Sigma^* \mid |x| = 4 \land x = x^R\}$. Prove that any DFA that accepts L_{R4} has at least nine states, not including dead states. Hint: consider what happens if 2 distinct length-2 prefixes of strings in L_{R4} drive the machine to the same state. Generalize your result: what can you say about a DFA that accepts $L_R = \{x \in \Sigma^* \mid x = x^R\}$?