CSC236 tutorial exercises, Week #4

Here are your tutorial sections:

Surname	Time	Room	TA
A-K	Friday 11	SS1088	Zhaowei
L-Tg	Friday 11	SS2105	Hamed
∥ Th–Z	Friday 11	BA2175	Gal
A-L	Friday noon	AB114	Wen
M-Z	Friday noon	BF323	Lauren
A-K	Friday 1	BA1170	Ammar
L-Tg	Friday 1	AB107	Alex
Th-Z	Friday 1	AB114	Shems
A-K	Thursday 8	BA2139	Zach
L-Tg	Thursday 8	BA2185	Ekansh
Th-Z	Thursday 8	BA2195	Danniel

These exercises are intended to give you practice with complete induction.

- 1. Define the set of expressions $\mathcal E$ as the smallest set such that:
 - (a) $x, y, z \in \mathcal{E}$.
 - (b) If $e_1, e_2 \in \mathcal{E}$, then so are $(e_1 + e_2)$ and $(e_1 \times e_2)$).

Define p(e): Number of parentheses in e.

Define s(e): Number of symbols from $\{x, y, z, +, \times\}$ in e, counting duplicates.

Use structural induction to prove that for all $e \in \mathcal{E}$, p(e) = s(e) - 1.

- 2. Define the set of non-empty full binary trees, \mathcal{T} , as the smallest set such that:
 - (a) Any single node is an element of \mathcal{T} .
 - (b) If $t_1, t_2 \in \mathcal{T}$, then so is any root node with edges to t_1 and t_2 .

Use structural induction to prove that any non-empty full binary tree has an odd number of nodes.