CSC236 tutorial exercises, Week #10

(best before Thursday afternoon)

Here are your tutorial sections:

Surname	Time	Room	TA
A-K	Friday 11	SS1088	Zhaowei
L-Tg	Friday 11	SS2105	Hamed
\parallel Th–Z	Friday 11	BA2175	Gal
A–L	Friday noon	AB114	Wen
\parallel M $-$ Z	Friday noon	BF323	Lauren
A-K	Friday 1	BA1170	Ammar
L-Tg	Friday 1	AB107	Alex
\parallel Th–Z	Friday 1	AB114	Shems
A-K	Thursday 8	BA2139	Zach
L-Tg	Thursday 8	BA2185	Ekansh
Th-Z	Thursday 8	BA2195	Danniel

Find the complexity class for functions below WITHOUT using induction. Note that the function S(n) is given ONLY for special cases of n. Assume S(n) is monotonic non-decreasing for all n.

- 1. Assume we know that when $n=2^{(2^k)}$ for some $k\in\mathbb{N},$ $S(n)=\lg\lg n+3$. Show that $S(n)\in O(\lg\lg n)$ for all $n\geq B,$ $n\in\mathbb{N}$ (not just special cases of n as defined above) and find a value for B.
- 2. Assume we know that when $n=2^{(2^k)}$ for some $k \in \mathbb{N}$, $S(n)=\lg\lg n+4$. Show that $S(n)\in O(\lg\lg n)$ for all $n\geq B, n\in \mathbb{N}$ (not just special cases of n as defined above) and find a value for B.
- 3. Assume we know that when $n = 2^{(2^k)}$ for some $k \in \mathbb{N}$, $S(n) = \lg \lg n + 3$. Show that $S(n) \in \Omega(\lg \lg n)$ for all n > 1, $n \in \mathbb{N}$ (not just special cases of n as defined above).

Hints: For the three problems above, you may use the following truths:

- i. You may use monotonicity and bounds to find the complexity class.
- ii. $\forall n>1, n\in\mathbb{N}, \exists k\in\mathbb{N} \text{ such that } \sqrt{2^{(2^k)}}\leq n\leq 2^{(2^k)}$
- iii. $\sqrt{2^{(2^k)}} = 2^{(2^{k-1})}$
- iv. For $n = 2^{(2^k)}, 2^k = \lg n$ and $k = \lg \lg n$