CSC236 fall 2016

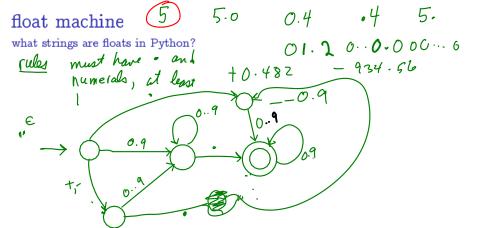
automata and languages

aka FSA aka FSM

Danny Heap

heap@cs.toronto.edu / BA4270 (behind elevators) http://www.cdf.toronto.edu/~csc236h/fall/ 416-978-5899

Using Introduction to the Theory of Computation,
Chapter 7


Outline

FSAs (finite state automata)

notes

turnstile finite-state machine what are the rules for turnstiles? push

states needed to classify a string

what state is a stingy vending machine in, based on coins? accepts only nickles, dimes, and quarters, no change given, and everything costs 30 cents... here's a useful toy (you'll need JRE)

draw this

δ	0	5	10	15	20	25	≥ 30
n	5	10	15	20	25	≥ 30	≥ 30
d	10	15	20	25	≥ 30	≥ 30	≥ 30
q	25	≥ 30	≥ 30	≥ 30	\geq 30	≥ 30	≥ 30

build an automaton with formalities...

quintuple: $(Q, \Sigma, q_0, F, \delta)$

Q is set of states, Σ is finite, non-empty alphabet, q_0 is start state F is set of accepting states, and $\delta: Q \times \Sigma \mapsto Q$ is transition function

We can extend $\delta: Q \times \Sigma \mapsto Q$ to a transition function that tells us what state a string s takes the automaton to:

$$\delta^*:\,Q{ imes}\Sigma^*\mapsto Q \qquad \delta^*(q,s)=egin{cases} q & ext{if } s=arepsilon \ \delta(\delta^*(q,s'),a) & ext{if } s'\in\Sigma^*, \ a\in\Sigma,s=s'a \end{cases}$$

String s is accepted if and only iff $\delta^*(q_0,s) \in F$, it is rejected otherwise.

example — an odd machine

devise a machine that accepts strings over $\{a, b\}$ with an odd number of as

Formal proof requires inductive proof of invariant:

$$\delta^*(E,s) = egin{cases} E & ext{if s has even number of $as} \ O & ext{if s has odd number of $as} \end{cases}$$

more odd/even

L is the language of binary strings with an odd number of as, but even length Devise a machine for L

notes

