CSC236 fall 2016

regular languages, regular expressions

Danny Heap

heap@cs.toronto.edu / BA4270 (behind elevators)

http://www.cdf.toronto.edu/~csc236h/fall/ 416-978-5899

Using Introduction to the Theory of Computation,
Chapter 7

Outline

regular expressions, regular languages

notes

they're equivalent:

L=L(M) for some DFSA $M\Leftrightarrow L=L(M')$ for some NFSA $M'\Leftrightarrow L=L(R)$ for some regular expression R step 1: convert L(R) to L(M')

start with \emptyset , ε , $a \in \Sigma$

equivalence... step 1.5: convert L(R) to L(M'):

union, concatenation, stars

equivalence...

step 2: convert L(M') to L(M)

use subset construction (also see example in week 11)

there could be $2^{|Q|}$ subsets to consider...

they're equivalent:

L=L(M) for some DFSA $M\Leftrightarrow L=L(M')$ for some NFSA $M'\Leftrightarrow L=L(R)$ for some regular expression R step 3: convert L(M) to L(R), eliminate states

equivalence...

state elimination recipe for state q

- 1. $s_1
 ldots s_m$ are states with transitions to q, with labels $S_1
 ldots S_m$
- 2. $t_1 \ldots t_n$ are states with transitions from q, with labels $T_1 \ldots T_n$
- 3. Q is any self-loop on q
- 4. Eliminate q, and add (union) transition label $S_i Q^* T_j$ from s_i to t_j .

regular languages closure

Regular languages are those that can be denoted by a regular expression or accept by an FSA. In addition:

ightharpoonup L regular $\Rightarrow \overline{L}$ regular

• L regular $\Rightarrow Rev(L)$ regular

pumping lemma (see course notes, page 234)

If $L\subseteq \Sigma^*$ is a regular language, then there is some $n_L\in \mathbb{N}$ $(n_L$ depends on L) such that if $x\in L$ and $|x|\geq n_L$ then:

- $ightharpoonup \exists u, v, w \in \Sigma^*, x = uvw$
- ▶ |v| > 0
- $ightharpoonup |uv| \leq n_L$
- $ullet uv^kw\in Lorall k\in\mathbb{N}$

consequences of regularity

How about $L = \{1^n 0^n | n \in \mathbb{N}\}$

How about $L=\{w\in\Sigma^*\mid |w|=p, p \text{ is prime}\}$

notes

