#### CSC236 fall 2016

languages: definitions and proofs

Danny Heap heap@cs.toronto.edu / BA4270 (behind elevators) http://www.cdf.toronto.edu/~csc236h/fall/

416-978-5899

Using Introduction to the Theory of Computation,
Chapter 7





### Outline

FSAs formally

formal languages

notes

## build an automaton with formalities...

quintuple:  $(Q, \Sigma, q_0, F, \delta)$  Q is set of states,  $\Sigma$  is finite, non-empty alphabet,  $q_0$  is start state F is set of accepting states, and  $\delta: Q \times \Sigma \mapsto Q$  is transition function

We can extend  $\delta: Q \times \Sigma \mapsto Q$  to a transition function that tells us what state a string s takes the automaton to:

$$\delta^*: Q{ imes}\Sigma^* \mapsto Q \qquad \delta^*(q,s) = egin{cases} q & ext{if } s = arepsilon \ \delta(\delta^*(q,s'),x) & ext{if } s' \in \Sigma^*, \ x \in \Sigma, s = s'x \end{cases}$$

String s is accepted if and only if  $\delta^*(q_0, s) \in F$ , it is rejected otherwise.





## example — an odd machine

devise a machine that accepts strings over  $\{a, b\}$  with an odd number of as

Formal proof requires inductive proof of state invariant:

$$\delta^*(E,s) = egin{cases} E & ext{only if } s ext{ has even number of } as \ O & ext{only if } s ext{ has odd number of } as \end{cases}$$



# more odd/even: intersection

L is the language of binary strings with an odd number of as, and at least one b Devise a machine for L

# more odd/even: union

L is the language of binary strings with an odd number of as, or at least one b Devise a machine that accepts L,

#### some definitions

alphabet: finite, non-empty set of symbols, e.g.  $\{a, b\}$  or  $\{0, 1, -1\}$ . Conventionally denoted  $\Sigma$ .

string: finite (including empty) sequence of symbols over an alphabet: abba is a string over  $\{a, b\}$ .

Convention:  $\varepsilon$  is the empty string, never an allowed symbol,  $\Sigma^*$  is set of all strings over  $\Sigma$ .

language: Subset of  $\Sigma^*$  for some alphabet  $\Sigma$ . Possibly empty, possibly infinite subset. E.g.  $\{\}$ ,  $\{aa, aaa, aaaa, ...\}$ .

N.B.:  $\{\} \neq \{\varepsilon\}$ .





Many problems can be reduced to languages: logical formulas, identifiers for compilation, natural language processing. Key question is recognition:

Given language L and string s, is  $s \in L$ ?

Languages may be described either by descriptive generators (for example, regular expressions) or procedurally (e.g. finite state automata)





#### more notation

string length: denoted |s|, is the number of symbols in s, e.g. |bba| = 3.

s = t: if and only if |s| = |t|, and  $s_i = t_i$  for  $1 \le i \le |s|$ .

 $s^R$ : reversal of s is obtained by reversing symbols of s, e.g.  $1011^R = 1101$ .

st or  $s \circ t$ : contratenation of s and t — all characters of s followed by all those of t, e.g.  $bba \circ bb = bbabb$ .

 $s^k$ : denotes s concatenated with itself k times. E.g.,  $ab^3 = ababab$ ,  $101^0 = \varepsilon$ .

 $\Sigma^n$ : all strings of length n over  $\Sigma$ ,  $\Sigma^*$  denotes all strings over  $\Sigma$ .



## language operations

 $\overline{L}$ : Complement of L, i.e.  $\Sigma^* - L$ . If L is language of strings over  $\{0,1\}$  that start with 0, then  $\overline{L}$  is the language of strings that begin with 1 plus the empty string.

 $L \cup L'$ : union

 $L \cap L'$ : intersection

L-L': difference

 $Rev(L): = \{s^R : s \in L\}$ 

concatenation: LL' or  $L\cdot L'=\{rt|r\in L,t\in L'\}$ . Special cases  $L\{\varepsilon\}=L=\{\varepsilon\}L$ , and  $L\{\}=\{\}=\{\}L$ .





## more language operations

exponentiation: 
$$L^k$$
 is concatenation of  $L$   $k$  times. Special case,  $L^0 = \{ \varepsilon \}$ , including  $L = \{ \}$  (!)

Kleene star:  $L^* = L^0 \cup L^1 \cup L^2 \cup \dots$ 

### notes

