A3: up tomorrow T202: focus of tutorial

CSC236 fall 2016

languages: definitions and proofs

Danny Heap
heap@cs.toronto.edu / BA4270 (behind elevators)
http://www.cdf.toronto.edu/~csc236h/fall/
416-978-5899

Using Introduction to the Theory of Computation,
Chapter 7

Outline

FSAs formally

formal languages

notes

build an automaton with formalities... quintuple: $(Q, \Sigma, q_0, F, \delta)$ $\geq = \leq 0.1$ e. 9

Q is set of states, Σ is finite, non-empty alphabet, q_0 is start state F is set of accepting states, and $\delta: Q \times \Sigma \mapsto Q$ is transition function

We can extend $\delta: Q \times \Sigma \mapsto Q$ to a transition function that tells us what state a string s takes the automaton to:

tells us what state a string
$$s$$
 takes the automaton to:
$$\underbrace{e \times \text{ten Lel}}_{\text{experiment}} \text{ trans. From function}_{\text{cempty}}$$

$$\delta^* : Q \times \Sigma^* \mapsto Q \qquad \delta^*(q,s) = \begin{cases} q & \text{if } s = \varepsilon \\ \delta(\delta^*(q,s'),x) & \text{if } s' \in \Sigma^*, \\ x \in \Sigma, s = s'x \end{cases}$$
 which the strings are:
$$x \in \Sigma, s = s'x$$

String s is accepted if and only if $\delta^*(q_0, s) \in F$, it is rejected otherwise.

example — an odd machine

devise a machine that accepts strings over $\{a, b\}$ with an odd number of as

Formal proof requires inductive proof of state invariant:

* Only from "only if" it each step. "if" follows because $\delta^*(E,s) = \begin{cases} E & \text{only if } s \text{ has even number of as} \\ \Theta & \text{only if } s \text{ has odd number of as} \end{cases}$ of -S tructural in duction: $\delta \in \mathcal{E}$

Basis $S^*(E, E) = \begin{cases} E \Rightarrow E \text{ has even } \# \text{ of } a_s \text{ (true antecelar)} \\ 0 \Rightarrow E \text{ has odd } \# \text{ of } a_s \\ \text{Folse} \Rightarrow \text{ anything (various truth)} \end{cases}$

example - an odd machine

devise a machine that accepts strings over $\{a, b\}$ with an odd number of as

Formal proof requires inductive proof of state invariant:

$$\begin{split} P(S): & \delta^*(E,s) = \begin{cases} E & \text{only if s has even number of as} \\ O & \text{only if s has odd number of $as} \end{cases} \\ \frac{\text{Induction s+ep}}{\text{Show $P(S)$ where $S=S'a$ on $S=S'b$.}} \\ \frac{\text{Case $S=S'a$}}{S^*(E,s) = S^*(E,s'a)} = \frac{S(S^*(E,s'),a)}{S(S^*(E,s'),a)} = \frac{S(S^*(E,a))}{S^*(E,s'a)} = \frac{S(S^*(E,s'),a)}{S^*(E,s')} \\ \frac{S(S,a)}{S} = \frac{S^*(E,s'a)}{S} = \frac{S(S^*(E,s'),a)}{S} = \frac{S(S^*(E,s'),a)}{S} \\ \frac{S(S,a)}{S} = \frac{S^*(S,a)}{S} \\ \frac{S(S^*(E,s'),a)}{S} = \frac{S(S^*(E,s'),a)}{S} \\ \frac{S$$

example — an odd machine

devise a machine that accepts strings over $\{a, b\}$ with an odd number of as

To show converse, notice that contrapositive of: $S^*(E,S) = E \Rightarrow S$ has even # a_S in S has all # a_S $\Rightarrow 7(S^*(E,S) = E)$ Formal proof requires inductive proof of state invariant:

$$\delta^*(E,s) = \begin{cases} E & \text{only if } s \text{ has even number of } as & \text{only if } s \text{ has odd number of } as \\ O & \text{only if } s \text{ has odd number of } as \end{cases}$$

$$= \begin{cases} \theta \Rightarrow s'a \text{ has odd } \# a_s \text{ (1 more a)} \end{cases}$$

$$= \begin{cases} E \Rightarrow s'a \text{ has even } \# a_s \text{ (1 more a)} \end{cases}$$

Exercial Care S = S'bResult we prove $S^*(E,S) = \emptyset \Rightarrow S$ has odd number of a_S ?

University on

example — an odd machine

devise a machine that accepts strings over $\{a, b\}$ with an odd number of as

Formal proof requires inductive proof of state invariant:

$$\delta^*(E,s) = \begin{cases} E & \text{only if } s \text{ has even number of } as \\ O & \text{only if } s \text{ has odd number of } as \end{cases}$$

$$we've shown \quad \delta^*(E,S) = 0 \quad \text{only if } s \text{ has } s$$

$$edd \# as . To show if direction:$$

$$\text{if } s \text{ has } edd \# as, by contrapositive}$$

$$\text{T}(S \text{ has even } \# a_S) \implies \text{T}(\delta^*(E,S) = E)$$

$$\implies \delta^*(E,S) = 0$$

more odd/even: intersection intersection L is the language of binary strings broduct of 2 machines like running both with an odd number of as, (and at least one b Devise a machine for L Each state, transition in product machine represents a pair B- at least one b, X

Same states + transitions but accepting states are more odd/even: union L is the language of binary strings ∇ with an odd number of as, or at least one bnow EB, OB, OX Devise a machine that accepts L, Exercise Levise this machine Note trans, tions may be indicated by a table, e.g. odd # as:

some definitions

bounds resource for machine

alphabet: finite non-empty set of symbols, e.g. $\{a, b\}$ or $\{0, 1, -1\}$. Conventionally denoted Σ .

string: finite (including empty) sequence of symbols over an alphabet: abba is a string over $\{a,b\}$.

Convention: ε is the empty string, never an allowed symbol, Σ^* is set of all strings over Σ .

language: Subset of Σ^* for some alphabet Σ . Possibly empty, possibly infinite subset. E.g. $\{\}$, $\{aa, aaa, aaaa, ...\}$.

N.B.: $\{\} \neq \{\epsilon\}$. $|\xi| = 0 + 1 = \{\epsilon\}$

Many problems can be reduced to languages: logical formulas, identifiers for compilation, natural language processing. Key question is recognition:

Given language L and string s, is $s \in L$?

- 6 s accepted by the relevant FSA? ... - 6 s Lenoted by the relevant regal?

Languages may be described either by descriptive generators (for example, regular expressions) or procedurally (e.g. finite state automata)

more notation

string length: denoted
$$|s|$$
, is the number of symbols in s , e.g. $|bba| = 3$. $|\mathcal{E}| = 0$ in $|\mathcal{E}| = 0$

s=t: if and only if |s|=|t|, and $s_i=t_i$ for $1\leq i\leq |s|$.

 s^R : reversal of s is obtained by reversing symbols of s, e.g. $1011^R = 1101$.

mostly use

st or $s \circ t$: contcatenation of s and t — all characters of s followed by all those of t, e.g. $bba \circ bb = bbabb$.

 s^k : denotes s concatenated with itself k times. E.g., $ab^3 = ababab$, $101^0 = \varepsilon$.

 Σ^n : all strings of length n over Σ , Σ^* denotes all strings over Σ . $\sum_{0}^{1} \sqrt{2} = \sum_{0}^{2} \langle 00, 11, 10, 01 \rangle$

language operations

 \overline{L} : Complement of L, i.e. $\Sigma^* - L$. If L is language of strings over $\{0,1\}$ that start with 0, then \overline{L} is the language of strings that begin with 1 plus the empty string.

$$L \cup L'$$
: union $= L'U L$

$$L \cap L'$$
: intersection = $L' \cap L$

$$L-L'$$
: difference $\neq L'-L$

$$\operatorname{Rev}(L)$$
: $= \{s^R : s \in L\}$

concatenation: LL' or $L \cdot L' = \{rt | r \in L, t \in L'\}$. Special cases $L\{\varepsilon\} = L = \{\varepsilon\}L$, and $L\{\} = \{\} = \{\}L$.

more language operations

exponentiation:
$$L^k$$
 is concatenation of L k times. Special case,
$$L^0 = \{\varepsilon\}, \text{ including } L = \{\} \quad (!)$$

$$\{\xi^0 = \{\xi\}\} \quad \text{very strange} \ .$$

Kleene star: $L^* = L^0 \cup L^1 \cup L^2 \cup \dots$

notes

notes

