CSC236 Intro. to the Theory of Computation

Lecture 4: Recurrences

Amir H. Chinaei, Fall 2016

Office Hours: W 4-4 BA4222

ahchinaei@cs.toronto.edu http://www.cs.toronto.edu/~ahchinaei/

Course page:

http://www.cdf.toronto.edu/~csc236h/fall/index.html

Section hage

http://www.cdf.toronto.edu/~csc236h/fall/amir_lectures.html

Recurrences 4-1

review

- So far
 - Simple Induction, Strong Induction, WOP, and Structural Induction
- over 48 examples
- This week
 - Recurrence relations, closed forms, and
 - proof of their properties

Recurrences 4-2

Example 50: rabbits

 A rabbit couple lives in an island. They are newborn and do not breed until they are 2 months old. Since age 2-month, each couple produces another couple per month. Find a recurrence relation for the number of couples after n months, assuming they never die.

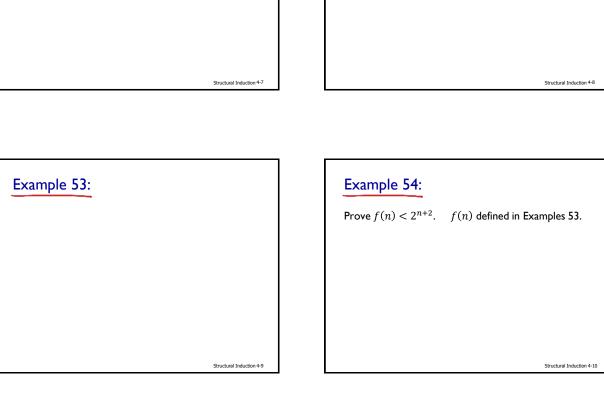
Structural Induction 4-3

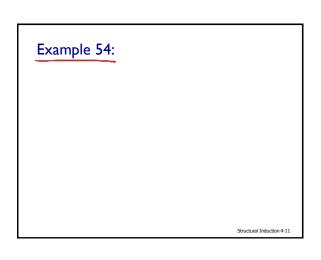
Example 50:

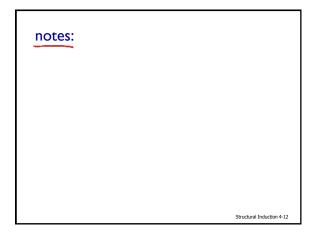
Structural Induction 4-4

Example 51: "00" free strings

* Find a recurrence relation for the number of binary strings of length n that do not contain substring "00". (Revisit of Example 27.)


Structural Induction 4-5


Example 52: finding closed form


- Assume $f_n = c_1 f_{n-1} + c_2 f_{n-2}$
 - Find roots of $r^2 c_1 r c_2 = 0$, r_1 and r_2 .
 - Then solve $f_n = \alpha_1 r_1^n + \alpha_2 r_2^n$, using the initial values of f.

Structural Induction 4-6

Example 52:		Example 53: $f(n) = \begin{cases} 2 & n = 0 \\ 7 & n = 1 \\ 2f(n-2) + f(n-1) & n > 1 \end{cases}$
		Find the closed form of f.
	Structural Induction 4-7	
Example 53:		Example 54: Prove $f(n) < 2^{n+2}$. $f(n) < 2^{n+2}$.

