CSC236 Intro. to the Theory of Computation

Lecture 3: WOP, Structural Induction

Amir H. Chinaei, Fall 2016

Office Hours: W 2-4 BA4222

ahchinaei@cs.toronto.edu http://www.cs.toronto.edu/~ahchinaei/

Course page:

http://www.cdf.toronto.edu/~csc236h/fall/index.html

Section page:

http://www.cdf.toronto.edu/~csc236h/fall/amir_lectures.html

recall

- use all resources available to you
 - before it becomes too late!
- * what resources?
 - office Hours:
 - M 2-3:30 in PT286C, W 2-4 BA4222, F 3:30-4:30 BA4270
 - · the course page and our section page
 - the <u>CS Help Centre</u>
 - the course forum
 - study groups and Peer Instruction
 - · email ahchinaei @ cs.torotno.edu

review

Week 01

- Simple Induction
 - AKA: Mathematical Induction or Principle of Mathematical Induction

Week 02

- Strong Induction
 - AKA: Complete Induction or Second Principle of Mathematical Induction
- Over 30 examples
- Simple Ind and Strong Ind are equivalent
- This week
 - Well Ordering Principle
 - Structural Induction

review

Simple Induction

it's a rule of inference:

$$P(b)$$

$$P(k) \to P(k+1) \qquad \forall k \geq b \in \mathbb{N}$$

$$P(n) \qquad \forall n \geq b \in \mathbb{N}$$

Strong Induction

it's a rule of inference:

$$P(b)$$

$$P(b) \land P(b+1) \land ... \land P(k) \rightarrow P(k+1) \quad \forall k \geq b \in \mathbb{N}$$

$$P(n) \quad \forall n \geq b \in \mathbb{N}$$

review

Simple Induction

- To show that all domino pieces fall over, we should show that
 - 1) there is a starting point, i.e., P(b) holds
 - and 2) all pieces are set in a well order such that falling of piece k implies falling of piece k+1 i.e., and $P(k) \rightarrow P(k+1)$ holds too.

Strong Induction

- To show that all domino pieces fall over, we should show that
 - 1) there is a starting point, i.e., P(b) holds
 - and 2) all pieces are set in a well order such that falling of all pieces to k implies falling of piece k+1 i.e., and $(P(b) \land ... \land P(k)) \rightarrow P(k+1)$ holds too.

well-ordering principle: wop

simple induction and strong induction are valid because of the well-ordering property:

* WOP: every nonempty subset of natural numbers has a minimum element.

Example 30: division algorithm

P(n): if $n, d \neq 0 \in \mathbb{N}$, there are unique q and $r \in \mathbb{N}$ where $0 \leq r < d$, such that n = dq + r.

scratch work

n, d	dq+r	P(n)

Example 30: P(n): for any $d\neq 0\in\mathbb{N}$, there are $q, r\in\mathbb{N}$, such that n=dq+r and $0\leq r\leq d$.

Proof by W.O.P.

- ❖ Let S be a subset of natural numbers of the form n-dq where $q \in \mathbb{N}$.
- ❖ S is nonempty because q can be as low as 0, i.e., n is always in S.
- By the well-ordering property:
 - S has a least element, let's call it r, where $r = n dq_0$
 - $r \ge 0$ because $r \in S \subset \mathbb{N}$.
 - and r < d; {otherwise, $r \ge d$

$$n-dq_0 \ge d \implies n-d(q_0+1) \ge 0$$

Let $r = n - d(q_0 + 1)$, obviously r < r which contradicts rbeing the least element; hence, r<d. }

❖ Hence, there are q and $r \in \mathbb{N}$, such that n = dq + r and $0 \le r < d$.

Example 30: uniqueness

- * so far, we proved q and $r \in \mathbb{N}$ exists such that n=dq+r and $0 \le r < d$
- proving q and r are unique does not require induction (or W.O.P).
- Proof by contradiction.
- * Assume q and r are not unique, i.e., there are q and $r \in \mathbb{N}$ such that n=dq+r and $0 \le r < d$

$$\Rightarrow$$
 dq'+r'=dq+r 1

$$\Rightarrow$$
 $(q'-q)d=r-r'$ 2

- * W.L.O.G, assume $q \ge q$:
 - If $q > q \Rightarrow q q > 0 \Rightarrow q q \ge 1 \Rightarrow (q q)d \ge d \stackrel{by 2}{\Longrightarrow} r r \ge d \Rightarrow r \ge d + r$ which is contradiction.
- \bullet Hence, q = q and $\stackrel{by 1}{\Longrightarrow} r = r$ too.

Example 31: cycles in round-robin tournaments

P(n): if there is a cycle in a rrt, there is a cycle of 3.

scratch work

Example 31:

Example 31:

notes:

Simple Ind, Strong Ind, and WOP are all equivalent.

inductive sets and structures

- If sets—and other structures—can be defined inductively (recursively), then
- their properties
 - can be implemented with recursive algorithms, and
 - can be proved with <u>induction</u>.

Inductive definitions of sets have two parts:

- The basis step specifies an initial collection of elements.
- The **recursive step** specifies rules to form new elements in the set from those already known to be in the set.

define sets, inductively

* **Example 32:** the set of natural numbers, \mathbb{N} :

Basis Step: $0 \in \mathbb{N}$;

Recursive Step: If *n* is in \mathbb{N} , then n + 1 is in \mathbb{N} .

Example 33: the set S of natural numbers of multiples of 3:

Basis Step: $3 \in S$;

Recursive Step: ...

define sets, inductively

* Example 34, strings: the set Σ^* over the alphabet Σ : Basis Step: $\lambda \in \Sigma^*$ (λ is the empty string); Recursive Step: if λ is in λ and λ is in λ , then λ is in λ .

Example 34', binary strings:

if $\Sigma = \{0,1\}$, the strings in in Σ^* are the set of all binary strings, such as $\lambda,0,1,00,01,10,11$, etc.

- * **Example 34"**, on trinary strings: if $\Sigma = \{a,b,c\}$, show that *aac* is in Σ^* .

define properties, inductively

Example 35, length of strings:

Basis Step: $l(\lambda) = 0$;

Recursive Step: l(wx) = l(w) + 1 if $w \in \Sigma^*$ and $x \in \Sigma$.

another example:

* Example 36, set of balanced strings, P:

```
Basis Step: () \in P;
Recursive Step:
if w \in P, then ()w \in P, (w) \in P and w() \in P.
```

- \star show that (() ()) is in P.
- why is))(() not in P?

Example 37: FBT

Basis Step:

There is a full binary tree consisting of only a single vertex r;

Recursive Step:

If T_1 and T_2 are disjoint full binary trees, there is a full binary tree, denoted by $T_1 \cdot T_2$, consisting of a root r together with edges connecting the root to each of the roots of the left subtree T_1 and the right subtree T_2 .

forming FBTs

Basis Step

Step I

Step 2

Example 38: height of FBT

- ❖ The height, h(T), of a full binary tree T can be defined as:
 - **Basis Step:** the height of a full binary tree T consisting of only a root r is h(T) = 0;
 - **Recursive Step:** if T_1 and T_2 are full binary trees, then the full binary tree $T = T_1 \cdot T_2$ has height $h(T) = 1 + \max(h(T_1), h(T_2))$.

Example 39: # of nodes

- * The number of vertices, n(T), of a full binary tree T can be defined as:
 - **Basis Step:** the number of vertices of a full binary tree T consisting of only a root r is n(T) = 1;
 - **Recursive Step:** if T_1 and T_2 are full binary trees, then the full binary tree $T = T_1 \cdot T_2$ has the number of vertices $n(T) = 1 + n(T_1) + n(T_2)$.

proof by structural induction

Recipe:

- To prove a property, P, of the elements of a recursively defined structure holds, we should demonstrate these steps:
 - · Proof Method: "structural induction"
 - Basis Step: show that P holds for all elements specified in the basis step of the structure definition.
 - Inductive Step: show that if P holds for each of the elements used to construct new elements, P holds for the new elements too.

The validity of structural induction can be shown to follow from simple induction

Example 40:

Theorem: if *T* is a FBT, then $n(T) \le 2^{h(T)+1} - 1$.

scratch work

Example 40:

- Proof Method: structural induction.
- * Basis Step:

Inductive Step:

Example 40:

Example 41: set of simple expression, ε

Definition: ε

Basis Step: $x, y, z \in \mathcal{E}$

Inductive Step: e_1 , $e_2 \in \varepsilon \Rightarrow (e_1 + e_2)$ and $(e_1 \times e_2) \in \varepsilon$

Prove $\forall e \in \mathcal{E}$, vr(e) = op(e) + 1, where vr(e) denotes the # of variables and op(e) denotes the # of operators in e.

Example 41:

Example 41:

notes: