CSC236 Intro. to the Theory of Computation

Lecture 2: Strong Induction

Amir H. Chinaei, Fall 2016

Office Hours: W 2-4 BA4222

ahchinaei@cs.toronto.edu http://www.cs.toronto.edu/~ahchinaei/

Course page:

http://www.cdf.toronto.edu/~csc236h/fall/index.html

Section page:

http://www.cdf.toronto.edu/~csc236h/fall/amir_lectures.html

recall

- use all resources available to you
 - before it becomes too late!
- * what resources?
 - office Hours:
 - M 2-3:30 in PT286C, W 2-4 BA4222, F 3:30-4:30 BA4270
 - · the course page and our section page
 - the <u>CS Help Centre</u>
 - the course forum
 - study groups and Peer Instruction
 - · email ahchinaei @ cs.torotno.edu

review

- Last week
 - Simple Induction
 - AKA: Mathematical Induction or Principle of Mathematical Induction
 - 17 examples
- This week
 - Strong Induction
 - AKA: Complete Induction or Second Principle of Mathematical Induction
- Next week
 - Structural Induction
 - Well Ordering

review

- Simple Induction
 - it's a rule of inference:

$$P(b)$$
 $P(k) \rightarrow P(k+1) \quad \forall k \geq b \in \mathbb{N}$
 $P(n) \quad \forall n \geq b \in \mathbb{N}$

- after all,
 - To show that all domino pieces fall over, we should show that
 - 1) there is a starting point, i.e., P(b) holds
 - and 2) all pieces are set in a well order such that falling of piece k+1

i.e., and $P(k) \rightarrow P(k+1)$ holds too.

yet another example

- Example 19. a student who went to office hour 01 has provided the following claim and proof. Is it valid?
- Conjecture: doubts in csc236 can be clarified by further discussion each week (e.g., going to the week's office hours).
 - Let P(n) denotes d_n –read doubts of week n–can be clarified by further discussion.
 - Proof by simple induction.
 - Basis step: P(1) holds as new doubts were clarified in office hours of week 01.
 - Inductive step: we assume that doubts of week k can be clarified by further discussion in that week. We need to show that doubts of week k+1 can be clarified too. There are two cases: doubts of week k+1 are either from week k (that can be clarified by further discussion, based on the I.H.) or they are new doubts (basis step). This completes the inductive step.
 - Therefore, by simple induction, all doubts in csc236 can be clarified by further discussion.

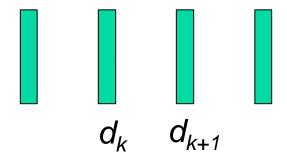
proof by strong induction

recipe:

- to prove that P(n) is true for all natural numbers n, we should demonstrate these steps:
 - Proof method: "strong induction"
 - Basis step: show that P(n) is true for some starting point(s), usually 0 or 1 but not always
 - Inductive step: show that $P(k) \rightarrow P(k+1)$ is true for all natural numbers k greater than the starting point.
 - to complete the inductive step, assume H—i.e., P(i)—holds *for all i's where b* $\leq i \leq k$ for an arbitrary natural number k, show that C must be true.

revisit: proof by simple induction

fall of the k+1th piece is implied by fall of the previous piece, k

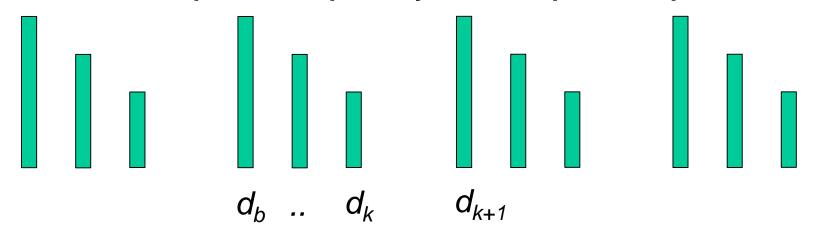


In the Inductive Step, we show that:

 $f(d_k)$ implies $f(d_{k+1})$

proof by strong induction

fall of the k+1th piece is implied by fall of all previous pieces, b..k



In the Inductive Step, we show that:

$$f(d_b) \wedge f(d_{b+1}) \wedge ... \wedge f(d_k)$$
 implies $f(d_{k+1})$

Example 20:

P(n): n can be written as product of prime numbers; $\forall n \ge 2 \in \mathbb{N}$.

scratch work

n	products	P(n)

P(*n*): *n* can be written as product of primes; $\forall n \ge 2 \in \mathbb{N}$.

Example 20:

Proof by Strong Induction

Basis step: P(2) holds because 2 is prime.

Inductive step:

Inductive Hypothesis: Assume P(i) holds for all $i \in \mathbb{N}$ where $2 \le i \le k$ for any arbitrary fixed $k \in \mathbb{N}$, i.e., we assume all numbers less than or equal k can be written as product of primes.

We need to show that P(k+1) holds too, i.e., k+1 can be written as product of primes too.

There are two cases: if k+1 is prime, we are done as P(k+1) holds.

If k+1 is not prime, it's composite and can be written as:

Example 20:

If k+1 is not prime, it's composite and can be written as:

k+1=m.n where $m,n \in \mathbb{N}$ and $2 \le m,n \le k+1$, i.e., $2 \le m,n \le k$

By the Inductive hypothesis, m and n each can be written by product of primes. Therefore, k+1 is a product of primes, i.e., P(k+1) holds too.

This completes the inductive step.

Therefore, by strong induction, it proves that $\forall n \ge 2 \in \mathbb{N}$, n can be written as product of primes.

Example 21:

P(n): any postage n that is 18 cents or more can exactly be stamped using just 4-cent and 7-cent stamps.

scratch work

n	stamps	P(n)
18	I*4+2*7	J
•••	•••	

P(*n*): *n* can be written as $a^*4 + b^*7$; $\forall n \ge 18 \in \mathbb{N}$.

Example 21:

Proof by Strong Induction

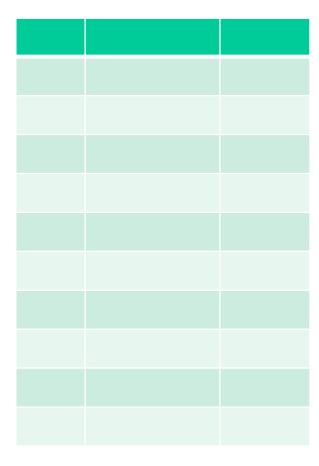
Example 21:

P(*n*): *n* can be written as $a^*4 + b^*7$; $\forall n \ge 18 \in \mathbb{N}$.

Example 22:

Make a conjecture to specify the minimum number of breaks to break a chocolate bar to all chocolate squares. Proof your claim.

scratch work

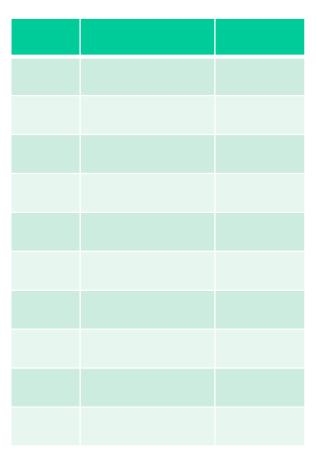


Example 22:

Example 22:

Example 23:

Let
$$f(n) = \begin{cases} 2 & n = 1 \\ f^2(\lfloor \sqrt{n} \rfloor) + 2f(\sqrt{n}) & n > 1 \end{cases}$$
, prove $f(n)$ is a multiple of 8.



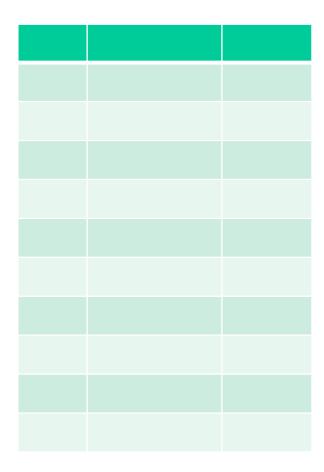
Example 23:

Example 23:

Example 24:

Prove that every simple polygon with n sides can be composed of n-2 triangles.

scratch work



Example 24:

P(n): An n-sided polygon can be triangulated to n-2 triangles; $\forall n \ge 18 \in \mathbb{N}$.

Example 24:

P(n): An n-sided polygon can be triangulated to n-2 triangles; $\forall n \ge 18 \in \mathbb{N}$.

strong induction recipe (revisited)

- 0. write out the claim as: "Let P(n) denote the claim in terms of n" follow next steps to show that P(n) holds $\forall n \geq b \in \mathbb{N}$, where b is staring point(s)
- I. write out "Proof method: strong induction"
- 2. write out "Basis step:" followed by reasoning that P(b) is true
- 3. write out "Inductive step:"
 - 3.1. write out "Inductive hypothesis: we assume P(i) is true $\forall i$, $b \le i \le k$ " where P(i) is the claim in terms of i
 - 3.2. reason that P(k+1) is true
 note 1: in your reasoning here, you must use the inductive hypothesis
 note 2: be sure your reasoning is true for any k ≥b, including k=b
 - 3.3. write out "This completes the inductive step"
- 4. write out "This proves P(n) is true for $\forall n \ge b \in \mathbb{N}$ " where P(n) is the claim in terms of n
- 5. Indicate end of proof by "□".

Notes:

Notes: