CSC236 Intro. to the Theory of Computation

Lecture I2: RE→NFA→DFA→RE ¬ pumping → ¬ RL

Amir H. Chinaei, Fall 2016

Office Hours: W 2-4 BA4222

ahchinaei@cs.toronto.edu http://www.cs.toronto.edu/~ahchinaei/

Course page:

http://www.cdf.toronto.edu/~csc236h/fall/index.html

Section page:

http://www.cdf.toronto.edu/~csc236h/fall/amir_lectures.html

review

last lecture

- FSA (nondeterministic and deterministic) = RE
 - NFA→DFA→RE→NFA

this week:

- more on $RE \rightarrow NFA$
- application of pumping lemma in proving a language is not regular

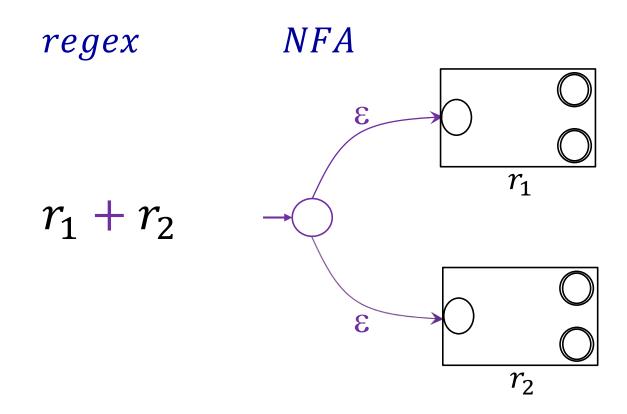
NFA, DFA, regex

$$❖$$
 NFA \Rightarrow DFA \Rightarrow regex \Rightarrow NFA

***** BASE CASES

regex

NFA

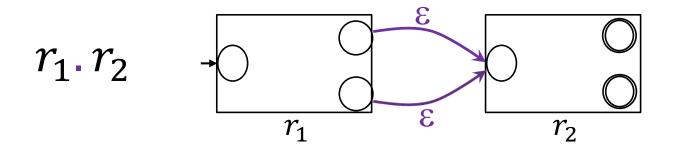

 \varnothing

3

b

NFA, DFA, regex

RECURSIVE CASES

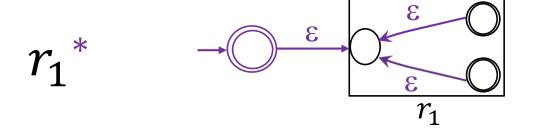

$NFA \Rightarrow DFA \Rightarrow regex \Rightarrow NFA$

NFA, DFA, regex

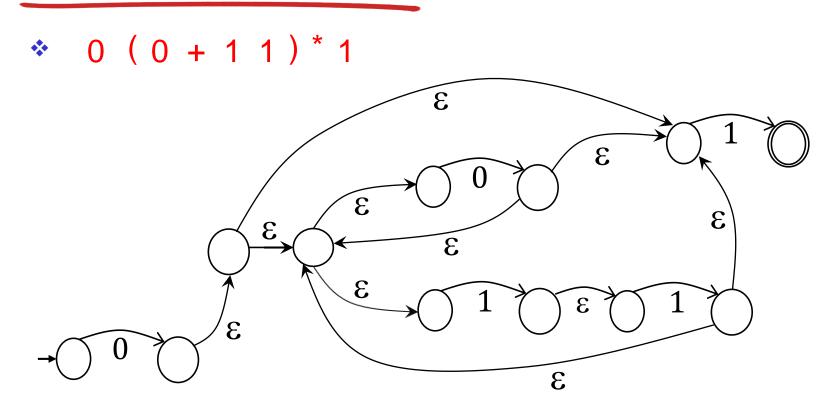
RECURSIVE CASES

regex

NFA

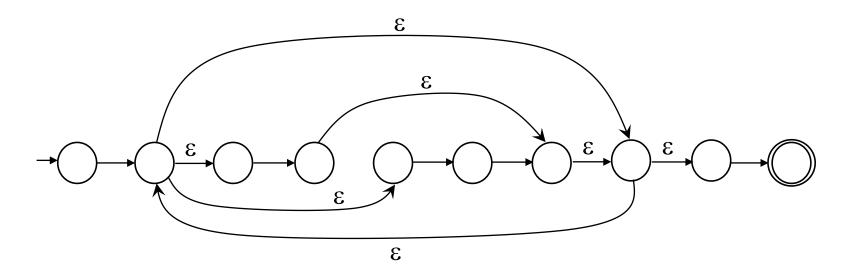

$NFA \Rightarrow DFA \Rightarrow regex \Rightarrow NFA$

NFA, DFA, regex


RECURSIVE CASES

regex

NFA


Example 104

$NFA \Rightarrow DFA \Rightarrow regex \Rightarrow NFA$

Example 105

- \bullet 0 (0 + 1 1) * 1 revisited (2nd algorithm)
 - make a transition from each symbol of alphabet to the next state
 - make an ε-transition from each brace to the next state
 - make 3 ε-transitions for each *
 - make 2 ε-transitions for each +

$NFA \equiv DFA \equiv regex$

- \bullet NFA \Rightarrow DFA \Rightarrow regex \Rightarrow NFA
 - nicely done!
- ❖ NFA \Rightarrow DFA \Rightarrow regex \Rightarrow NFA
- \bullet NFA \Rightarrow DFA \Rightarrow regex \Rightarrow NFA
- analogy:

pumping lemma

- \clubsuit If L is RL, then $\exists p \geq 1$ such that $\forall \omega \in L$, $|\omega| \geq p$, $\omega = xyz$:
 - $|xy| \leq p$
 - |y| > 0
 - $\forall k \geq 0, xy^k z \in L$
- application of pumping lemma is in proving non-regularity
 - assume the language is regular, apply the pumping lemma and run to a contradiction
 - note:

Example 105

• Prove $L = \{ \omega \in \Sigma^* | \omega = a^n b^n \mid n \ge 0 \}$ is not regular.

final notes

- you have enhanced your analytical skills, in particular in
 - systematic reasoning, proofs, program correctness, and simple computational models
- next?
 - CSC263: more algorithm analysis & data structures
 - CSC373: more algorithms complexities and paradigms
 - ...
 - CSC448: more formal languages and automata
- if I can be of any help, drop me a line or stop by BA4222.