CSC236 Intro. to the Theory of Computation

Lecture 11: fsa and regular expressions

Amir H. Chinaei, Fall 2016

Office Hours: W 2-4 BA4222

ahchinaei@cs.toronto.edu http://www.cs.toronto.edu/~ahchinaei/

Course page:

http://www.cdf.toronto.edu/~csc236h/fall/index.html

http://www.cdf.toronto.edu/~csc236h/fall/amir_lectures.html

FSA 11-1

review of FSA

- last week
 - FSA and regular languages.
- this week:
 - FSA and regular expressions

FSA 11-2

notation

- * Σ : finite non-empty set of symbols, e.g., $\{a, b\}$
- * Σ^k : concatenation of symbols of Σ , k times, ≥ 0
 - e.g., Σ^0 : { ε }, Σ^1 : {a,b}, Σ^2 : {aa,bb,ab,ba}, ...
- $\bullet \Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup ...$
- * string $\in \Sigma^*$, e.g., abbaba
- * |string|: length of string, e.g., |abbaba| = 6
- * s^R : reversal of string s, e.g., $abbaba^R = ababba$
- * s.t: concatenation of strings s and t
- * language $\subset \Sigma^*$, e.g., $L_{86} = \{ \omega \in \Sigma^* | \omega \text{ has odd } \# \text{ of } a \}$

language operations

- $L_1 \cup L_2 = \{ \omega \in \Sigma^* | \omega \in L_1 \text{ or } \omega \in L_2 \}$
 - e.g., $L_{86} \cup L_{88} = \{\omega \in \Sigma^* | \omega \text{ has odd number of } a\text{'s or }$ ω does not end with a}
- \bullet L₁. L₂ = {ω = s. t ∈ Σ* | s ∈ L₁, t ∈ L₂}
 - e.g., L_{86} . $L_{88} = \{\omega \in \Sigma^* | \omega \text{ has odd number of } a\text{'s followed}$ by a string that does not end with a}
- $L_1^* = \{\varepsilon\} \cup \{\omega \in \Sigma^* | \exists s_1, s_2, \dots, s_n \in L_1 \text{ such that }$ $\omega = s_1. s_2. \dots . s_n$ for some n}
 - e.g., $L_{86}^{*}=\{\omega\in\Sigma^*|\ \omega \ \text{concatenation of any number}$ strings that have odd number of a}

language operations

- $L_1 \cap L_2 = \{\omega \in \Sigma^* | \omega \in L_1 \text{ and } \omega \in L_2\}$
 - e.g., $L_{86} \cap L_{88} = \{\omega \in \Sigma^* | \omega \text{ has odd number of } a$'s and does not end with a}
- $L_1 L_2 = \{ \omega \in \Sigma^* | \omega \in L_1 \text{ and } \omega \notin L_2 \}$
 - e.g., L_{86} L_{88} = { $\omega \in \Sigma^*$ | ω has odd number of a's and ends with a}
- $\begin{array}{l} \label{eq:L1} \bullet \ \overline{L_1} = \{\underline{\omega} \in \Sigma^* | \ \underline{\omega} \not\in L_1 \} \\ \bullet \ \text{e.g.,} \overline{L_{88}} = \{\underline{\omega} \in \Sigma^* | \ \underline{\omega} \ \text{ends with } a \} \end{array}$
- $L_1^R = \{ \omega \in \Sigma^* | \omega^R \in L_1 \}$
 - e.g., $L_{88}^{R} = \{\omega \in \Sigma^* | \omega \text{ do not start with } a\}$

FSA 11-5

regex

- so far, we have explicitly seen
 - RL can be shown by FSA
 - RL can be shown by set description
- another way to define RL is by:
 - Regular Expressions
 - · aka regex, RE

FSA 11-6

RL: formal definition (revisit)

- \diamond let Σ be the alphabet:
 - the empty set, Ø, is a RL
 - the set $\{\epsilon\}$ is a RL
 - for each $a \in \Sigma$, the set $\{a\}$ is a RL
 - If L_1 and L_2 are regular languages, then
 - union: $L_1 \cup L_2$ is RL
 - concatenation: $L_1.L_2$ is a RL
 - Kleene star: L_1^* is a RL
- ❖ no other RL over ∑ exists.

FSA 11-7

L(r) is defined by structural induction

- * basis step:
 - if r is a regex defined by basis step of the definition,
 - $L(\varnothing)$ is a RL
 - $L(\varepsilon)$ is a RL
 - L(a), for any $a \in \Sigma$, is a RL

inductive step:

- if r_1, r_2 are regex's defined by ind step of the definition,

 - $L(r_1.r_2) = L_1(r_1).L_2(r_2)$ is a RL
 - $L(r_1^*) = L_1(r_1)^*$ is a RL

FSA 11-8

regex examples (96)

- * assume $\Sigma = \{0,1\}$ \varnothing , ϵ , 0, 1, 0+1, 00, 01, 10, 11, 000, 111,
 - $L((0+1)^*)$
 - L(0*)
 - L((10)*)
 - L(10*)

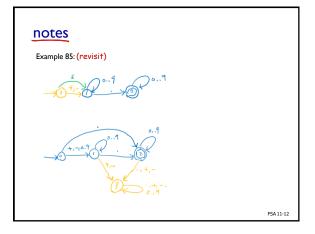
FSA 11-9

FSA 11-11

regex examples

FSA 11-10

Example 84: (revisit) Example 84: (revisit) A...Z. o...9 Example 84: (revisit)



Example 97

- $\begin{array}{ll} & \bullet \text{ Prove } L_{86} = L(r_{86}) \text{ where} \\ & \bullet L_{86} = \{\omega \in \{0,1\}^* \mid \omega \text{ starts and ends with different bits} \} \\ & \bullet r_{86} = 0.\,(0+1)^*.\,1 + 1.\,(0+1)^*.\,0 \end{array}$

FSA 11-13

Example 97

FSA 11-14

regex identities

- communitativity of union:
- * associativity of union:
- $\ \ \, \ \ \,$ associativity of concatenation:
- left distributivity:
- right distributivity:
- identity for union:
- identity for concatenation:
- * annihilator for concatenation:
- ❖ idempotence of Kleene star:

FSA 11-15

NFA, DFA, regex

FSA 11-16

NFA, DFA, regex

FSA 11-17

notes

FSA 11-18