CSC236 Intro. to the Theory of Computation

Lecture II: fsa and regular expressions

Amir H. Chinaei, Fall 2016

Office Hours: W 2-4 BA4222

ahchinaei@cs.toronto.edu/~ahchinaei/

Course page:

http://www.cdf.toronto.edu/~csc236h/fall/index.html

Section page:

http://www.cdf.toronto.edu/~csc236h/fall/amir_lectures.html

review of FSA

- * last week
 - FSA and regular languages.
- this week:
 - FSA and regular expressions

<u>notation</u>

- * Σ : finite non-empty set of symbols, e.g., $\{a, b\}$
- ❖ Σ^k : concatenation of symbols of Σ , k times, ≥0
 - e.g., Σ^0 : { ϵ }, Σ^1 : {a,b}, Σ^2 : {aa,bb,ab,ba}, ...
- * string $\in \Sigma^*$, e.g., abbaba
- * |string|: length of string, e.g., |abbaba| = 6
- * s^R : reversal of string s, e.g., $abbaba^R = ababba$
- \star s. t: concatenation of strings s and t
- * language $\subseteq \Sigma^*$, e.g., $L_{86} = \{ \omega \in \Sigma^* | \omega \text{ has odd } \# \text{ of } \alpha \}$

language operations

- $L_1 \cup L_2 = \{ \omega \in \Sigma^* | \omega \in L_1 \text{ or } \omega \in L_2 \}$
 - e.g., $L_{86} \cup L_{88} = \{\omega \in \Sigma^* | \omega \text{ has odd number of } a\text{'s or } \omega \text{ does not end with } a\}$
- - e.g., L_{86} . $L_{88} = \{\omega \in \Sigma^* | \omega \text{ has odd number of } a\text{'s followed by a string that does not end with } a\}$
- * $L_1^* = \{\varepsilon\} \cup \{\omega \in \Sigma^* | \exists s_1, s_2, ..., s_n \in L_1 \text{ such that } \omega = s_1, s_2, ..., s_n \text{ for some } n\}$
 - e.g., $L_{86}^* = \{\omega \in \Sigma^* | \omega \text{ concatenation of any number strings that have odd number of } a\}$

language operations

- $L_1 \cap L_2 = \{ \omega \in \Sigma^* | \omega \in L_1 \text{ and } \omega \in L_2 \}$
 - e.g., $L_{86} \cap L_{88} = \{\omega \in \Sigma^* | \omega \text{ has odd number of } a\text{'s and does not end with } a\}$
- $L_1 L_2 = \{ \omega \in \Sigma^* | \omega \in L_1 \text{ and } \omega \notin L_2 \}$
 - e.g., $L_{86} L_{88} = \{\omega \in \Sigma^* | \omega \text{ has odd number of } a\text{'s and ends with } a\}$
- $\bullet \ \overline{L_1} = \{\omega \in \Sigma^* | \omega \notin L_1\}$
 - e.g., $\overline{L_{88}} = \{\omega \in \Sigma^* | \omega \text{ ends with } a\}$
- $L_1^R = \{ \omega \in \Sigma^* | \omega^R \in L_1 \}$
 - e.g., $L_{88}^{R} = \{\omega \in \Sigma^* | \omega \text{ do not start with } a\}$

regex

- so far, we have explicitly seen
 - RL can be shown by FSA
 - RL can be shown by set description
- another way to define RL is by:
 - Regular Expressions
 - aka regex, RE

RL: formal definition (revisit)

- \diamond let Σ be the alphabet:
 - the empty set, Ø, is a RL
 - the set $\{\varepsilon\}$ is a RL
 - for each $a \in \Sigma$, the set $\{a\}$ is a RL
 - If L_1 and L_2 are regular languages, then
 - union: $L_1 \cup L_2$ is RL
 - concatenation: L_1 . L_2 is a RL
 - Kleene star: L_1^* is a RL
- \diamond no other RL over Σ exists.

L(r) is defined by structural induction

basis step:

- if r is a regex defined by basis step of the definition,
 - $L(\emptyset)$ is a RL
 - $L(\varepsilon)$ is a RL
 - L(a), for any $a \in \Sigma$, is a RL

inductive step:

- if r_1, r_2 are regex's defined by ind step of the definition,
 - $L(r_1 + r_2) = L_1(r_1) \cup L_2(r_2)$ is a RL
 - $L(r_1, r_2) = L_1(r_1) L_2(r_2)$ is a RL
 - $L(r_1^*) = L_1(r_1)^*$ is a RL

regex examples (96)

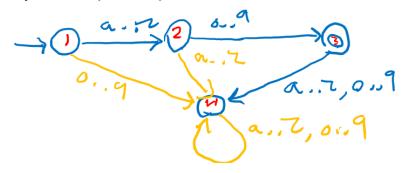
* assume $\Sigma = \{0,1\}$ • \emptyset , ϵ , 0, 1, 0+1, 00, 01, 10, 11, 000, 111,

- $L((0+1)^*)$
- L(0*)
- $L((10)^*)$
- $L(10^*)$

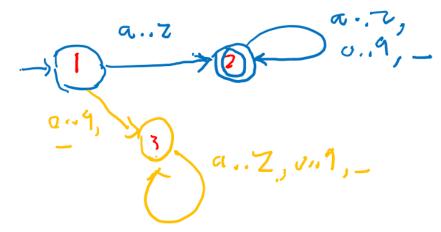
regex examples

notes

Example 83: (revisit)

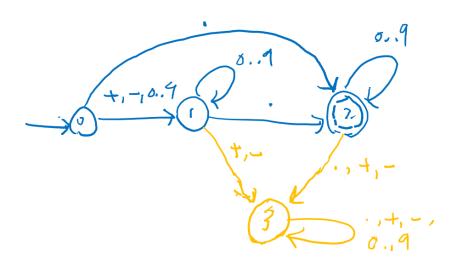


Example 84: (revisit)



notes

Example 85: (revisit)



Example 97

- Prove $L_{86} = L(r_{86})$ where
 - $L_{86} = \{\omega \in \{0,1\}^* \mid \omega \text{ starts and ends with different bits}\}$
 - $r_{86}=0.(0+1)^*.1+1.(0+1)^*.0$

Example 97

regex identities

- communitativity of union:
- associativity of union:
- associativity of concatenation:
- left distributivity:
- right distributivity:
- identity for union:
- identity for concatenation:
- annihilator for concatenation:
- idempotence of Kleene star:

NFA, DFA, regex

NFA, DFA, regex

notes