CSC236 Intro. to the Theory of Computation

Lecture 10: fsa and regular languages

Amir H. Chinaei, Fall 2016

Office Hours: W 2-4 BA4222

ahchinaei@cs.toronto.edu http://www.cs.toronto.edu/~ahchinaei/

Course page:

http://www.cdf.toronto.edu/~csc236h/fall/index.html

Section page:

http://www.cdf.toronto.edu/~csc236h/fall/amir_lectures.html

FSA 9-1

review

- last week
 - intro to FSA:
 - · useful to recognize a language
 - e.g. used in the lexical analyzer
 - and in many other problems that can be encoded to language recognition
- this week:
 - what languages FSAs can recognize?

FSA 9-2

FSA formal definition

- is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$
 - Q is the set of states, which is finite & non-empty
 - Σ is the alphabet, which is finite & non-empty
 - $\delta: Q \times \Sigma \to Q$ is the transition function
 - $q_0 \in Q$ is the start state
 - F ⊆ Q is the set of accept states
- ❖ L(M) is a language that machine M accepts,
 - i.e., set of all strings that machine M accepts

FSA 9-3

Example 86 revisited

FSA that only accepts strings with an odd number of a's, and any number of b's.

 $\Sigma = \{a, b\}$

FSA 9-4

L(M) for Example 86?

❖ set of all strings that M accepts:

regular languages

languages that can be recognized by an FSA.

- ❖ e.g.,
 - The language recognized by FSA in **Example 85**: float numbers. $\Sigma = \{0...9, +, -, ..\}$
 - The language recognized by FSA in Example 83: simple identifiers. Σ = {a...z, 0...9}

FSA 9-6

FSA 9-5

formal definition

- \diamond let Σ be the alphabet:
 - the empty set, Ø, is a RL
 - the set $\{\epsilon\}$ is a RL
 - for each $a \in \Sigma$, the set $\{a\}$ is a RL
 - If L_1 and L_2 are regular languages, then
 - union: $L_1 \cup L_2$ is RL
 - concatenation: $L_1.L_2$ is a RL
 - Kleene star: L_1^* is a RL
- ❖ no other RL over ∑ exists.

FSA 9-7

example

let $\Sigma = \{a, b\}$

FSA 9-8

notes

Example 83:

Example 84

-ς_Δ q.q

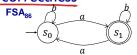
notes

Example 85:

FSA 9-10

Example 87: FSA correctness

❖ Revisit Example 86:

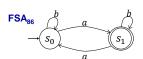


*** FSA**₈₆ accepts L_{86} = {ω ∈ Σ*|ω has odd # of a's}
■ nothing less, nothing more

FSA 9-11

Example 87:

❖ FSA_{86} accepts L_{86}

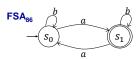


- - nothing less, nothing more
 - ٠
 - .

FSA 9-12

Example 87:

 \star FSA₈₆ accepts L_{86}



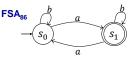
- to prove it, show that a string ω takes (from the beginning) to s_1 **IFF** ω has an odd # of a's.
- cannot reach s_1 , without transitions from previous states
- Hence, we must define & prove a SI for every state

FSA₈₆

.

FSA 9-13

Example 87:



- ightharpoonup FSA $_{86}$ accepts L_{86}
 - $P(\omega): \delta^*(s_0, \omega) = \begin{cases} s_0 \\ s_1 \end{cases}$

only if ω has even # of α 's only if ω has odd # of α 's

- ❖ prove SI for all states holds.
- proof by structural induction.
- basis step:

. .

FSA 9-14

Example 87:

❖ FSA_{86} accepts L_{86}

• $P(\boldsymbol{\omega})$: $\delta^*(s_0, \boldsymbol{\omega}) = \begin{cases} s_0 \\ s_1 \end{cases}$

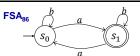
only if ω has even # of a's only if ω has odd # of a's

inductive step:

.

Example 87:

case 2: y = b
left as a practice for you.



FSA 9-16

formal definition of RL (revisit)

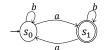
- \bullet let Σ be the alphabet:
 - the empty set, Ø, is a RL
 - the set $\{\epsilon\}$ is a RL
 - for each $a \in \Sigma$, the set $\{a\}$ is a RL
 - If L_1 and L_2 are regular languages, then
 - $\bullet \ \ \, {\rm union:} \ \, L_1 \cup L_2 \ \, {\rm is} \ \, {\rm RL}$
 - ullet concatenation: $L_1.L_2$ is a RL
 - Kleene star: L_1^* is a RL
- \diamond no other RL over Σ exists.

FSA 9-17

FSA 9-15

union (closer look)

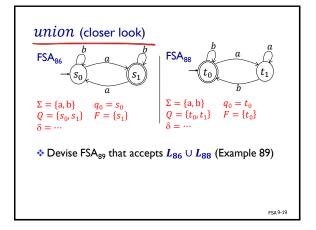
Let L_{86} be set of all strings with an odd number of a's, (Example 86)



Let L_{88} be set of all strings that do not end with a (Example 88)

riangle Draw the FSA that accepts $L_{86} \cup L_{88}$ (Example 89)

FSA 9-18



notes