CSC236 Intro. to the Theory of Computation

Lecture 10: fsa and regular languages

Amir H. Chinaei, Fall 2016

Office Hours: W 2-4 BA4222

ahchinaei@cs.toronto.edu http://www.cs.toronto.edu/~ahchinaei/

Course page:

http://www.cdf.toronto.edu/~csc236h/fall/index.html

Section page:

http://www.cdf.toronto.edu/~csc236h/fall/amir_lectures.html

review

last week

- intro to FSA:
 - useful to recognize a language
 - e.g. used in the lexical analyzer
 - and in many other problems that can be encoded to language recognition

this week:

what languages FSAs can recognize?

FSA formal definition

- \bullet is a 5-tuple M = (Q, Σ , δ , q₀, F)
 - Q is the set of states, which is finite & non-empty
 - Σ is the alphabet, which is finite & non-empty
 - $\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}$ is the transition function
 - $q_0 \in Q$ is the start state
 - $F \subseteq Q$ is the set of accept states
- L(M) is a language that machine M accepts,
 - i.e., set of all strings that machine M accepts

Example 86 revisited

❖ FSA that only accepts strings with an odd number of a's, and any number of b's.

$$\Sigma = \{a, b\}$$

L(M) for Example 86?

set of all strings that M accepts:

regular languages

languages that can be recognized by an FSA.

- ❖ e.g.,
 - The language recognized by FSA in **Example 85**: float numbers. $\Sigma = \{0...9, +, -,..\}$

• The language recognized by FSA in **Example 83**: simple identifiers. $\Sigma = \{a...z, 0...9\}$

formal definition

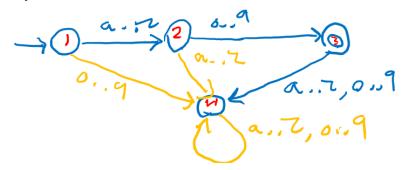
- \diamond let Σ be the alphabet:
 - the empty set, Ø, is a RL
 - the set $\{\varepsilon\}$ is a RL
 - for each $a \in \Sigma$, the set $\{a\}$ is a RL
 - If L_1 and L_2 are regular languages, then
 - union: $L_1 \cup L_2$ is RL
 - concatenation: L_1 . L_2 is a RL
 - Kleene star: L_1^* is a RL
- \diamond no other RL over Σ exists.

example

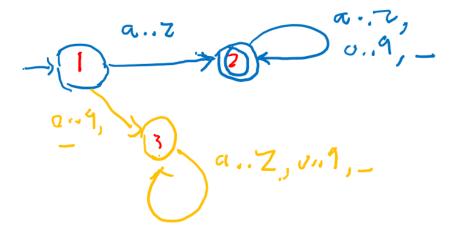
let
$$\Sigma = \{a, b\}$$

notes

Example 83:

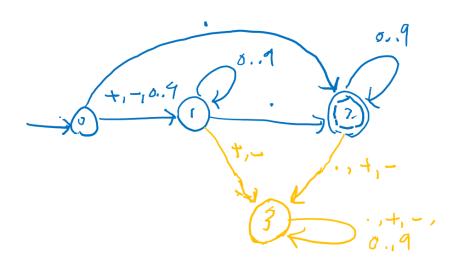


Example 84:



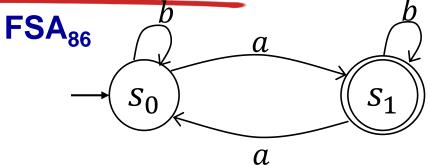
notes

Example 85:



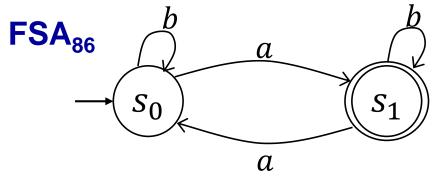
Example 87: FSA correctness

Revisit Example 86:



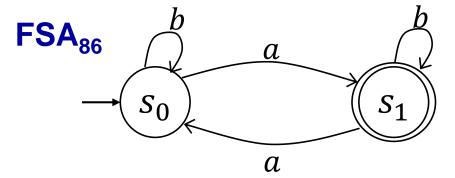
- * FSA₈₆ accepts $L_{86} = \{\omega \in \Sigma^* | \omega \text{ has odd } \# \text{ of } a\text{'s} \}$
 - nothing less, nothing more

 \star FSA₈₆ accepts L_{86}

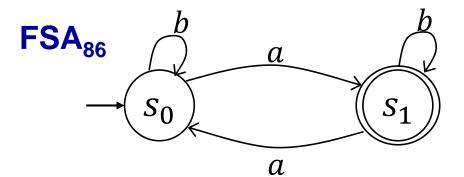


- * FSA₈₆ accepts $L_{86} = \{\omega \in \Sigma^* | \omega \text{ has odd } \# \text{ of } a\text{'s} \}$
 - nothing less, nothing more

 \star FSA₈₆ accepts L_{86}



- to prove it, show that a string ω takes (from the beginning) to s_1 IFF ω has an odd # of a's.
- cannot reach s_1 , without transitions from previous states
- Hence, we must define & prove a SI for every state

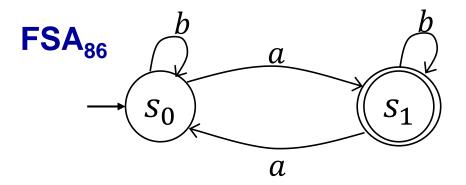


- \star FSA₈₆ accepts L_{86}

 $P(\omega): \delta^*(s_0, \omega) = \begin{cases} s_0 & only if \omega \text{ has even } \# \text{ of } a's \\ s_1 & only if \omega \text{ has odd } \# \text{ of } a's \end{cases}$

- prove SI for all states holds.
- proof by structural induction.
- basis step:

- \star FSA₈₆ accepts L_{86}
 - $P(\boldsymbol{\omega}): \delta^*(s_0, \boldsymbol{\omega}) = \begin{cases} s_0 \\ s_1 \end{cases}$
- inductive step:



only if ω has even # of a's only if ω has odd # of a's

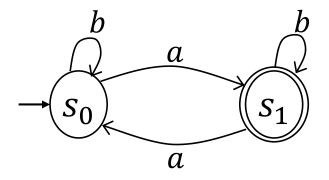
- case 2: y = b
 - left as a practice for you.

formal definition of RL (revisit)

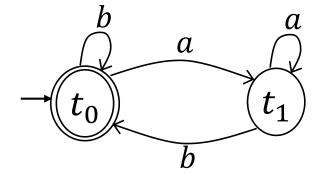
- \diamond let Σ be the alphabet:
 - the empty set, Ø, is a RL
 - the set $\{\varepsilon\}$ is a RL
 - for each $a \in \Sigma$, the set $\{a\}$ is a RL
 - If L_1 and L_2 are regular languages, then
 - union: $L_1 \cup L_2$ is RL
 - concatenation: L_1 . L_2 is a RL
 - Kleene star: L_1^* is a RL
- \diamond no other RL over Σ exists.

union (closer look)

Let L_{86} be set of all strings with an odd number of a's, (Example 86)

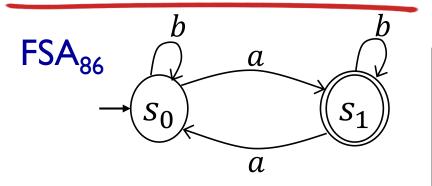


Let L_{88} be set of all strings that do not end with a (Example 88)

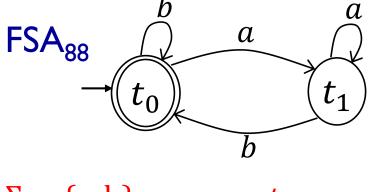


 \bullet Draw the FSA that accepts $L_{86} \cup L_{88}$ (Example 89)

union (closer look)



$$\Sigma = \{a, b\}$$
 $q_0 = s_0$
 $Q = \{s_0, s_1\}$ $F = \{s_1\}$
 $\delta = \cdots$



$$\Sigma = \{a, b\} \qquad q_0 = t_0$$

$$Q = \{t_0, t_1\} \qquad F = \{t_0\}$$

$$\delta = \cdots$$

* Devise FSA_{89} that accepts $L_{86} \cup L_{88}$ (Example 89)

notes