Welcome to CSC236! Introduction to the Theory of Computation

Amir H. Chinaei, Fall 2016

ahchinaei@cs.toronto.edu http://www.cs.toronto.edu/~ahchinaei/

Office hours: W 2-4 BA4222

today

- Course outline (bird's-eye view)
 - what this course is about

- Logistics
 - Course organization, information sheet
 - Assignments, grading scheme, etc.
- Introduction to
 - proofs

what is this course about?

- some analytical skills
 - reasoning to argue a claim is right or wrong
 - · a statement is true or false
 - · a math property holds or not
 - a computer program is correct or not
 - the reasoning should follow certain structures
 - · otherwise the argument may be messy if valid at all
 - · it's an art
 - ==> formal (systematic) reasoning
 - • •

anonymous quiz

true or false?

• • •

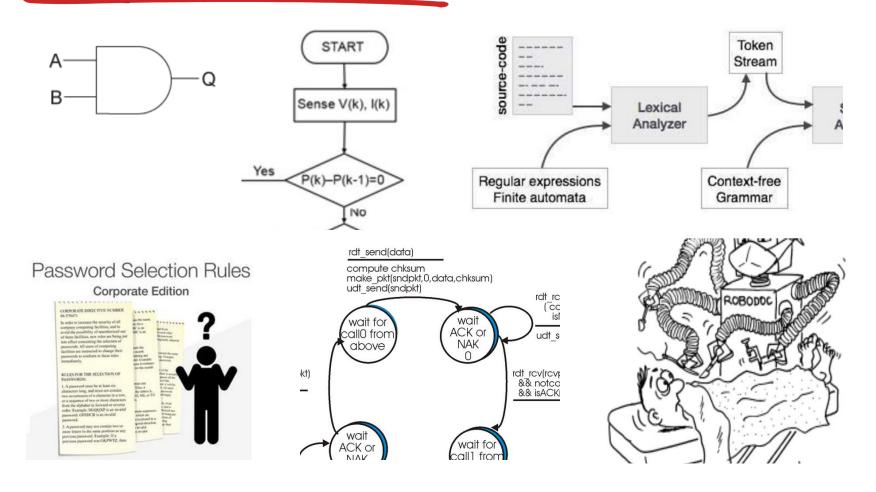
what is this course about?

- some analytical skills
 - •
 - systematic counting
 - e.g. how many different passwords can exist when certain rules exist?
 - intro to formal languages
 - e.g. how natural language sentences can be represented such that computer can reason about them?

why learning this course?

- these topics can assist us in
 - computer Science:
 - designing computer hardware (architecture) and software (algorithms, programming languages, security protocols, network protocols, artificial intelligence, ...
 - as well as in other disciplines:
 - such as philosophy, linguistics, law, ...
 - actually in our daily life!

computer science



as well as in other disciplines

logistics

prerequisite

- need to have solid background from CSC165
 - otherwise,
 - review CSC165 material, especially
 - mathematical prerequisites (Chapter 1.5)
 - proof techniques (Chapter 3)
 - big Oh notation (Chapter 4)
 - read Chapter 0 of Vassos's notes
 - · contact me
 - start a discussion in the forum
 - go to the Help Centre

course components

- lectures: concepts
- labs: practice, more details, problem solving, & quizzes
- exercises and assignments: mastering your skills
- peer Instructions: learn from your fellow students
- readings: preparing you for above

course web page

- for important information on
 - lecture and lab time/location/material
 - contact information of course staff
 - office hours and location
 - exercises/Assignments/Readings specification/solution
 - deadlines and evaluation
 - communication and announcements
 - • •
- follow the course web page, regularly

http://www.cdf.toronto.edu/~csc236h/fall/

let's start with a simple question

count subsets

- How many subsets does set {} have?
- How many subsets does set {a} have?
- How many subsets does set {a, b} have? How?
- * How many subsets does set {a, b, c} have? How?

messy approach

count subsets 2

- How many subsets does set {} have?
- How many subsets does set {a} have?
- How many subsets does set {a, b} have? How?
- * How many subsets does set {a, b, c} have? How?

a better approach (systematic)

count subsets 3

- How many subsets does set {} have?
- How many subsets does {a} have?
- How many subsets does {a, b} have? How?

How many subsets does {a, b, c} have? How?

a more systematic approach

observation

an empty set has subset, and adding one member to a set will the number of its subsets.

set	power set

conjecture: a set with cardinality of *n* has ... subsets.

won't sell yet ...

- This is just an observation, or a conjecture at best
 - and begging

set	power set
•••	•••
4	16
5	32
6	64
7	128
•••	•••

- does not work
- To sell it, we need to prove it first.

proof methods

- Exhaustive proof
- Proof by cases
- Direct proof
- Proof by contraposition
- (Dis)Proof, by contradiction
- Proof by
 - Simple Induction
 - Complete Induction
 - Structural Induction

proof by simple induction

- Many (mathematical) statements can be expressed by propositional functions, denoted by P(n)
 - Example 1:
 - -P(n): n^3 -n is divisible by 3; for every natural number n.
 - Example 2:

$$-P(n): \sum_{1}^{n} i = \frac{n(n+1)}{2}$$

- Example 3:
 - -P(n): every $2^n \times 2^n$ checkerboard with one missing square can be tiled with (3-piece) L-shape tiles, i.e.

proof by simple induction

recipe:

- To prove that P(n) is true for all natural numbers n, we should demonstrate these steps:
 - Proof method: "simple induction"
 - Basis step: show that P(n) is true for some starting point(s), usually 0 or 1 but not always
 - Inductive step: show that $P(k) \rightarrow P(k+1)$ is true for all natural numbers k greater than the starting point.
 - to complete the inductive step, assume H holds for an arbitrary natural number k, show that C must be true.

Notes

- Proofs by induction do not always start at 1 or 0. They could start at any natural number b, and there could be more than one b.
- * Induction can be expressed as a rule of inference: $(P(b) \land \forall k (P(k) \rightarrow P(k+1))) \rightarrow \forall n P(n)$, where b, k, and $n \in \mathbb{N}$.
- * In the inductive step, we do **NOT** assume that P(k) is true for all numbers! We should show that if we assume that P(k) is true for an arbitrary k, then P(k+1) must also be true.

Simple induction as a rule of inference

$$(P(b) \land \forall k (P(k) \rightarrow P(k+1))) \rightarrow \forall n P(n)$$

our first proof

Recall our conjecture:

a set with n members has 2ⁿ subsets.

Solution:

- Proof method: simple induction P(n): a set with n members has 2^n subsets.
- **Basis step**: P(0) is true, because a set with 0 members (i.e. $\{\}$) has 2^0 subset (i.e. just itself, $\{\}$).
- Inductive step: (c.f. Slide 22) we assume P(k) is true for an arbitrary k, and—by using this assumption—we show that P(k+1) must be true. In other words, we show that $P(k) \rightarrow P(k+1)$ holds. (see next ...)

P(n): a set with n members has 2^n subsets.

our first proof (continued)

- Inductive step: we want to show that $P(k) \rightarrow P(k+1)$ holds.
 - Inductive hypothesis: we assume for an arbitrary fixed k, every set S with k members has 2^k subsets.
 - Now let set $T = S \cup \{new\}$, where $new \in T$ and $new \notin S$. Hence |T| = k+1.

our first proof (continued)

- For each subset U of S, there are exactly two subsets of T: one is U without the new member, the other is U with the new member. (cf. Slide 14). By the inductive hypothesis, S has 2^K subsets. Since there are two subsets of T for each subset of S, the number of subsets of T is $2 \cdot 2^k = 2^{k+1}$. This concludes that it must be true that every set with k+1 members has 2^{K+1} subsets.
- The inductive step is now complete.
- Therefore, P(n): a set with n members has 2^n subsets is true for all $n \in \mathbb{N}$.

Example 2:

 n^3 -n is divisible by 3; for every natural number n. i.e. $\forall n \in \mathbb{N}$, $3 \mid n^3$ -n

scratch work

Example 2: (proof)

Prove $\forall n \in \mathbb{N}$, $3 \mid n^3-n$

Example 2: (continued)

Prove $\forall n \in \mathbb{N}$, $3 \mid n^3-n$

Example 3:

The units digit of 3^n is either 1, 3, 7, or 9. i.e. $\forall n \in \mathbb{N}$, $3^n \equiv 1$ or 3 or 7 or 9 (mod 10)

scratch work

Example 3: (proof)

Prove $3^n \equiv 1$ or 3 or 7 or 9 (mod 10); $\forall n \in \mathbb{N}$.

Example 3: (continued)

Prove $3^n \equiv 1$ or 3 or 7 or 9 (mod 10); $\forall n \in \mathbb{N}$.

Example 4:

every $2^n \times 2^n$ checkerboard missing a square can be tiled with L-shape tiles.

scratch work

Example 4:

every $2^n \times 2^n$ checkerboard missing a square can be tiled with L-shape tiles. scratch work

Example 4: (proof)

Prove $\forall n \ge 1 \in \mathbb{N}$, $2^n \times 2^n$ checkerboards missing a square can be tiled with L-shape tiles.

Example 4: (continued)

Prove $\forall n \ge 1 \in \mathbb{N}$, $2^n \times 2^n$ checkerboard missing a square can be tiled with L-shape tiles.

Simple induction recipe (revisited)

- 0. write out the claim as: "Let P(n) denote the claim in terms of n" follow next steps to show that P(n) holds $\forall n \geq b \in \mathbb{N}$, where b is staring point(s)
- I. write out "Proof method: simple induction"
- 2. write out "Basis step:" followed by reasoning that P(b) is true
- 3. write out "Inductive step:"
 - 3.1. write out "Inductive hypothesis: we assume P(k) is true for an **arbitrary fixed** $k \ge b$ " where P(k) is the claim in terms of k
 - 3.2. reason that P(k+1) is true
 - **note I:** in your reasoning here, you must use the inductive hypothesis
 - **note 2:** be sure your reasoning is true for any $k \ge b$, including k=b
 - **note 3:** verify if you need to adjust your starting point, b
 - 3.3. write out "This completes the inductive step"
- 4. write out "This proves P(n) is true for $\forall n \geq b \in \mathbb{N}$ " where P(n) is the claim in terms of n
- 5. Indicate end of proof by "□".

Wrong proofs by induction

Example 5: P(n): $\forall n \ge 2 \in \mathbb{N}$, every n lines, no two of them are parallel, meet in a common point.

Proof method: simple induction

Basis step: P(2) is true because any two lines that are not parallel meet in a common point.

Inductive step:

Inductive hypothesis: we assume P(k) is true, i.e. for any $k \ge 2$, that is true that every k lines, no two of them parallel, meet in a common point.

Then, we show that P(k+1) is true too.

Wrong proofs by induction

Consider k+1 lines, no two of them parallel. By our I.H., the first k of these lines must meet in a common point p_1 . Also, by our I. H, the last k of these lines meet in a common point p_2 . p_1 and p_2 cannot be different points; otherwise, all lines are the same line.

so, p_1 and p_2 are the same point and this completes our inductive step that k+1 lines, no two of them parallel, meet in a common point.

This proves that $\forall n \ge 2 \in \mathbb{N}$, every set of n lines, no two of them are parallel, meet in a common point.

What's wrong in this proof?