CSC236 fall 2012

regular languages, regular expressions

Danny Heap heap@cs.toronto.edu BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/236/F12/ 416-978-5899

Using Introduction to the Theory of Computation,
Chapter 7

Outline

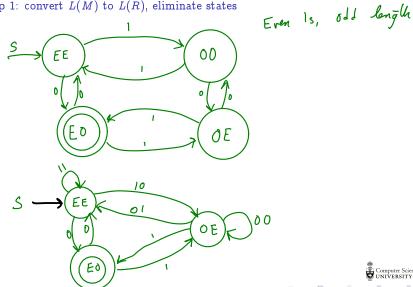
regular expressions, regular languages

notes

they're equivalent:

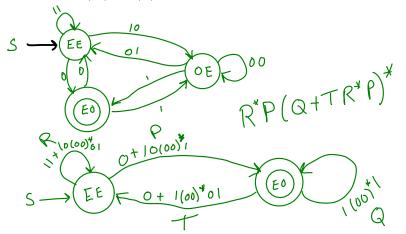
L = L(M) for some DFSA $M \Leftrightarrow L = L(M')$ for some NFSA $M' \Leftrightarrow$ L = L(R) for some regular expression R

step 1: convert L(M) to L(R), eliminate states



they're equivalent:

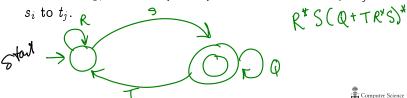
L = L(M) for some DFSA $M \Leftrightarrow L = L(M')$ for some NFSA $M' \Leftrightarrow L = L(R)$ for some regular expression R step 1: convert L(M) to L(R), eliminate states



equivalence...

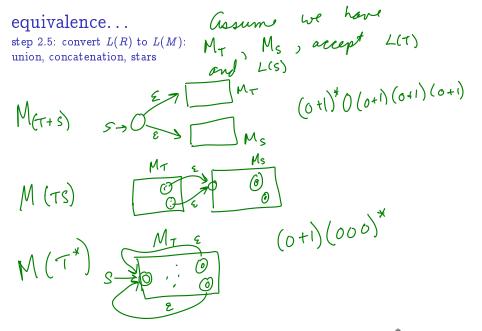
state elimination recipe for state q

- 1. $s_1
 ldots s_m$ are states with transitions to q, with labels $S_1
 ldots S_m$
- 2. $t_1 \ldots t_n$ are states with transitions from q, with labels $T_1 \ldots T_n$
- 3. Q is any self-loop on q
- 4. Eliminate q, and add (union) transition label $S_iQ^*T_j$ from



equivalence:

step 2: convert L(R) to L(M): $L = L(R) \implies L = L(M)$ start with \emptyset , ε , $a \in \Sigma$ Mø Ma M_a , $a \in \Sigma$



notes $L = \frac{3}{3} |^{n} 0^{n} | n \in \mathbb{N} \frac{3}{3}$ L= {E, 10, 1100, 111000, ... } $(10)^{*}(11)^{*}(00)^{*}$ Prof (contradiction) ٤, 10, 1010, That no DFSA L. Suppose M accepts, L. Then M has finite # of States, & M+ What happens with Ktok+1 in process s, M proceeds 900 9, 092 ... 9 R+2 ... > 928+2 Some gi visited twice - \$ 200-1- > \$ 200-12 notes $L = \{ S \in \{0,1\}^{3} \mid |S| \text{ is prime } \}$

Colin Norman Feyyaz