both test - posted g1 - 94 N109 87654

CSC236 fall 2012

regular expressions

Danny Heap heap@cs.toronto.edu BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/236/F12/ 416-978-5899

Using Introduction to the Theory of Computation,
Chapter 7

Outline

regular expressions

product, non-deterministic FSAs

regular languages

notes

another way to define languages

In addition to the language accepted by DFSA L(M) and set description $L = \{...\}$.

Definition: The regular expressions (regexps or (RE)) over alphabet Σ is the smallest set such that:

- 1. $\{\}, \stackrel{\mathcal{E}}{\epsilon}, \text{ and } a, \text{ for every } a \in \Sigma \text{ are REs over } \Sigma$
- 2. if T and S are REs over Σ , then so are:
 - ightharpoonup T + S (union) lowest precedence operator
 - ▶ TS (concatenation) middle precedence operator
 - ▶ T* (star) highest precedence

regular expression to language:

The L(R), the language denoted (or described) by R is defined by structural induction:

Basis: If R is a regular expression by the basis of the definition of regular expressions, then define L(R):

- ▶ $L(\emptyset) = \emptyset$ (the empty language)
- ▶ $L(\varepsilon) = \{\varepsilon\}$ (the language consisting of just the empty string)
- ▶ $L(a) = \{a\}$ (the language consisting of the one-symbol string)

Induction step: If R is a regular expression by the induction step of the definition, then define L(R):

- $L(S+T)=L(S)\cup L(T)$
- ightharpoonup L(ST) = L(S)L(T)
- ▶ $L(T^*) = L(T)^*$

regexp examples

$$L(0+1) = \{0,1\}$$

▶ $L((0+1)^*)$ All binary strings over $\{0,1\}$

- ▶ L(0*1*) 0 or more 0s followed by 0 or more 1s.
 - ~ L (0*) U L (14)
- L(0* + 1*) 0 or more 0s or 0 or more 1s. \succeq
- ▶ $L((0+1)(0+1)^*)$ Non-empty binary strings over $\{0,1\}$.

example

$$L = \{x \in \{0,1\}^* \mid x \text{ begins and ends with a different bit}\}$$

$$R = (0(0+1)^* \mid + 1(1+0)^* 0) \qquad \text{OR} \qquad \text{Ext}$$

$$Prove \qquad \downarrow = L(R)$$

$$L \subseteq L(R) \qquad \downarrow L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R) \subseteq L$$

$$Rroof (not really): \text{ to show } L(R)$$

RE identities

some of these follow from set properties... others require some proof (see 7.2.5 example)

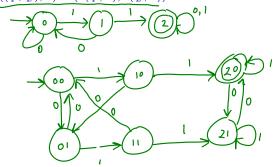
$$L(R) \cup L(S) \equiv L(S) + L(R)$$

- communitativity of union: $R + S \equiv S + R$
- ▶ associativity of union: $(R+S)+T \equiv R+(S+T)$
- associativity of concatenation: (RS) $T \equiv R(ST)$
- ▶ left distributivity: $R(S+T) \equiv RS + RT$ $\sqrt{}$
- ▶ right distributivity: $(S + T)R \equiv SR + TR$
- identity for union: $R + \emptyset \equiv R$
- identity for concatenation: $R\varepsilon \equiv R \equiv \varepsilon R$
- ▶ annihilator for concatenation: $\emptyset R \equiv \emptyset \equiv R\emptyset$
- idempotence of Kleene star: $(R^*)^* \equiv R^*$ $\mathbb{E}(\mathbb{R}^{\mathcal{F}})^*)^* \equiv (\mathbb{R}^*)^* \equiv \mathbb{R}^*$

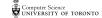
product construction

L is the language of binary strings over $\{0,1\}^*$ with two 1s in a row and an even number of 0s

idea:
$$\delta((q_i, q_j), a) = (\delta(q_i, a), \delta(q_j, a))$$



01011



non-deterministic FSA (NFSA) example a corresponding FSA that accepts $L((010+01)^*$ F = \{90\}
\(\text{Street} \)
\(\text{Street transistion function is between sets of family states and it string Loives our machine to a set that included an accepting state, said string is accepted. $\widehat{M} = \{0, 8, 5, 5, \overline{F}, \overline{E}\}$, $M = \{0 = \beta(0), 8\}$ {5}, $\{5\}$, $\{5\}$, $\{5\}$, $\{6\}$

they're equivalent:

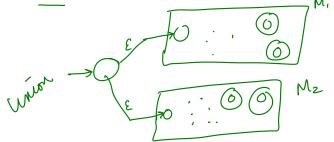
L = L(M) for some DFSA $M \Leftrightarrow L = L(M')$ for some NFSA $M' \Leftrightarrow L = R(R)$ for some regular expression R

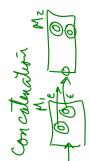
$$L(R) = L(M_1)$$

$$L(S) = L(M_2)$$

$$L(R+S) = L(M_1) \cup L(M_2)$$

$$L(R+S) = L(M_1) \cup L(M_2)$$





notes

