CSC236 fall 2012

regular expressions

Danny Heap heap@cs.toronto.edu BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/236/F12/ 416-978-5899

Using Introduction to the Theory of Computation,
Chapter 7

Outline

regular expressions

product, non-deterministic FSAs

regular languages

notes

another way to define languages

In addition to the language accepted by DFSA L(M) and set description $L = \{...\}$.

Definition: The regular expressions (regexps or REs) over alphabet Σ is the smallest set such that:

- 1. $\{\}$, ϵ , and a, for every $a \in \Sigma$ are REs over Σ
- 2. if T and S are REs over Σ , then so are:
 - ightharpoonup T + S (union) lowest precedence operator
 - ▶ TS (concatenation) middle precedence operator
 - ▶ T* (star) highest precedence

regular expression to language:

The L(R), the language denoted (or described) by R is defined by structural induction:

Basis: If R is a regular expression by the basis of the definition of regular expressions, then define L(R):

- ▶ $L(\emptyset) = \emptyset$ (the empty language)
- ▶ $L(\varepsilon) = \{\varepsilon\}$ (the language consisting of just the empty string)
- ▶ $L(a) = \{a\}$ (the language consisting of the one-symbol string)

Induction step: If R is a regular expression by the induction step of the definition, then define L(R):

- $L(S+T)=L(S)\cup L(T)$
- ightharpoonup L(ST) = L(S)L(T)
- ▶ $L(T^*) = L(T)^*$

regexp examples

- $L(0+1) = \{0,1\}$
- ▶ $L((0+1)^*)$ All binary strings over $\{0,1\}$
- $L((01)^*) = \{\varepsilon, 01, 0101, 010101, \ldots\}$
- ▶ L(0*1*) 0 or more 0s followed by 0 or more 1s.
- ▶ $L(0^* + 1^*)$ 0 or more 0s or 0 or more 1s.
- ▶ $L((0+1)(0+1)^*)$ Non-empty binary strings over $\{0,1\}$.

example

 $L = \{x \in \{0,1\}^* \mid x \text{ begins and ends with a different bit}\}$

RE identities

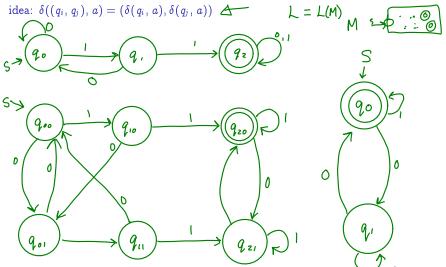
some of these follow from set properties... others require some proof (see 7.2.5 example)

$$L(R)UL(S) = L(S)UL(R)$$

- communitativity of union: $R + S \equiv S + R$
- ▶ associativity of union: $(R+S)+T \equiv R+(S+T)$
- ▶ associativity of concatenation: $(RS)T \equiv R(ST)$
- ▶ left distributivity: $R(S + T) \equiv RS + RT$
- ▶ right distributivity: $(S + T)R \equiv SR + TR$
- identity for union: $R + \emptyset \equiv R$
- identity for concatenation: $R\varepsilon \equiv R \equiv \varepsilon R$
- lacktriangle annihilator for concatenation: $\emptyset R \equiv \emptyset \equiv R \emptyset$
- ▶ idempotence of Kleene star: $(R^*)^* \equiv R^*$

product construction

L is the language of binary strings over $\{0,1\}^*$ with two 1s in a row and an even number of 0s



non-deterministic FSA (NFSA) example

FSA that accepts $L((010 + 01)^*$ DFSA 0101 EL PNESA $\delta^*(q_0,000) \rightarrow \{q_0,q_1\}$

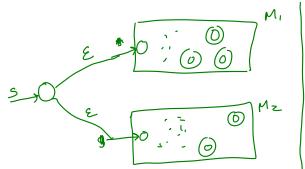
they're equivalent:

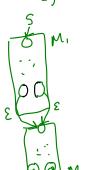
L = L(M) for some DFSA $M \Leftrightarrow L = L(M')$ for some NFSA $M' \Leftrightarrow$

 $L = \mathbb{R}(R)$ for some regular expression R

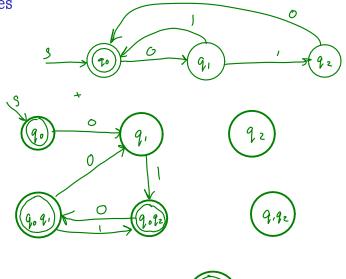
and L(Mi) L(M2) Went M2 c4

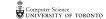
 $M_3 \stackrel{\leftarrow}{\underline{s}^{+}} L(M_3) = L(M_1) \cup L(M_2)$





notes





notes

