1. Write a detailed, structured proof that

$$\forall f: \mathbb{N} \to \mathbb{R}^{\geqslant 0}, \forall g: \mathbb{N} \to \mathbb{R}^{\geqslant 0}, g \in \Omega(f) \Rightarrow g^2 \in \Omega(f^2)$$
 (where f^2 and g^2 are defined in the obvious way: $\forall n \in \mathbb{N}, f^2(n) = f(n) \cdot f(n)$, and similarly for g). (I show only the finished proof here, not its development.) Assume $f: \mathbb{N} \to \mathbb{R}^{\geqslant 0}$ and $g: \mathbb{N} \to \mathbb{R}^{\geqslant 0}$. Assume $g \in \Omega(f)$. Then $\exists c_0 \in \mathbb{R}^+, \exists B_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B_0 \Rightarrow g(n) \geqslant c_0 \cdot f(n)$. # definition of Ω # Show that $g^2 \in \Omega(f^2)$:
Let $c_1 = c_0^2$. Then $c_1 \in \mathbb{R}^+$. # because $c_0 \in \mathbb{R}^+$
Let $B_1 = B_0$. Then $B_1 \in \mathbb{N}$. # because $B_0 \in \mathbb{N}$
Assume $n \in \mathbb{N}$ and $n \geqslant B_1 = B_0$.
Then $g(n) \geqslant c_0 \cdot f(n)$ (because $n \geqslant B_0$), so $g^2(n) = g(n) \cdot g(n) \geqslant (c_0 \cdot f(n)) \cdot (c_0 \cdot f(n)) = c_0^2 \cdot f(n) \cdot f(n) = c_1 \cdot f^2(n)$.
Hence, $\forall n \in \mathbb{N}, n \geqslant B_1 \Rightarrow g^2(n) \geqslant c_1 \cdot f^2(n)$.
Then $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow g^2(n) \geqslant c \cdot f^2(n)$.
Thus, $g^2 \in \Omega(f^2)$. # by definition of Ω
Therefore, $g \in \Omega(f) \Rightarrow g^2 \in \Omega(f^2)$.

2. Prove or disprove the following statement:

$$\forall f: \mathbb{N} \to \mathbb{R}^{\geqslant 0}, \forall g: \mathbb{N} \to \mathbb{R}^{\geqslant 0}, f \in \mathcal{O}(g) \Rightarrow (f+g) \in \Theta(g)$$

(where (f+g) is defined in the obvious way: $\forall n \in \mathbb{N}, (f+g)(n) = f(n) + g(n)$).

(I show only the finished proof here, not its development. Another way to write this proof is to prove separately $(f+g) \in \Omega(g)$ and $(f+g) \in \mathcal{O}(g)$, using c_1 and c_2 , respectively.)

Assume $f: \mathbb{N} \to \mathbb{R}^{\geqslant 0}$ and $g: \mathbb{N} \to \mathbb{R}^{\geqslant 0}$. Assume $f \in \mathcal{O}(g)$. Then $\exists c_0 \in \mathbb{R}^+, \exists B_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B_0 \Rightarrow f(n) \leqslant c_0 \cdot g(n)$. # definition of \mathcal{O} # Show that $(f+g) \in \Theta(g)$: Let $c_1 = 1$ and $c_2 = c_0 + 1$. Then $c_1 \in \mathbb{R}^+$ and $c_2 \in \mathbb{R}^+$. # because $c_0 \in \mathbb{R}^+$ Let $B_1 = B_0$. Then $B_1 \in \mathbb{N}$. # because $B_0 \in \mathbb{N}$

Assume $n\in\mathbb{N}$ and $n\geqslant B_1.$ Then $c_1g(n)=g(n)\leqslant f(n)+g(n)=(f+g)(n).$ # because $f(n)\geqslant 0$

Also, $(f+g)(n)=f(n)+g(n)\leqslant c_0g(n)+g(n)=c_2g(n)$. # because $n\geqslant B_1=B_0$ Hence, $\forall n\in\mathbb{N},\,n\geqslant B_1\Rightarrow c_1g(n)\leqslant (f+g)(n)\leqslant c_2g(n)$.

 $\mathsf{Then} \,\, \exists c_1 \in \mathbb{R}^+, \exists c_2 \in \mathbb{R}^+, \exists B_1 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B_1 \Rightarrow c_1 g(n) \leqslant (f+g)(n) \leqslant c_2 g(n).$

So $(f+g) \in \Theta(g)$. # by definition

Then $f \in \mathcal{O}(g) \Rightarrow (f+g) \in \Theta(g)$.

Then $\forall f: \mathbb{N} \to \mathbb{R}^{\geqslant 0}, \forall g: \mathbb{N} \to \mathbb{R}^{\geqslant 0}, f \in \mathcal{O}(g) \Rightarrow (f+g) \in \Theta(g).$