buzdp s 3o
ngﬁ‘:"HM‘- Q“SU‘-\’;"‘]- Fri - 3%
CSC165 fall 2014

Mathematical expression

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/165/F14/
416-978-5899

Course notes, chapter 3, 4

o
% UN[VERSITY OF TORONTO

W - (C - _) v
w“‘&;nference rﬁlewgw_ oot +7’M 4 Waﬁﬂ’
W/)“R» o Condl Ve P
asymptoticpsw W . ﬂ e D) wilh W ﬂ*\ _
17 S - ghowy Ke D pad Poe)

notes

OOOOOOOOOOOOOOOOOOOO

get wrong right

Be careful proving a claim false. Consider the claim, for some
suitably defined X, Y and P, Q:

S : Vz € X,Vy € Y,P(z,y) = Q(z,vy)

To disprove S, should you prove:

Ve X,Vy € Y,P(z,y) = —Q(z,y)

Vo veVge‘() ?(9(,\7\/\762(46)(7)

What about

Vz e X,Vy € Y, (P(z,y) = Q(z,v))

Explain why, or why not.

1 -
P91 Ixe X, —:Ij e ‘fJ \OUJ)/\ A (')(/\j) T,

Define T'(n) by:
Vn € N T(n)e B eN,n="Ti+1

Take some scrap paper, @ Writename on it, and fill in
as much of the proof of the following claim as possible:

Vn €N, T(n) = T(n?)

Now fill in as much of the disproof of the following claim as
possible: -
Vn €N, T(n?) = T(n)

&

F Computer Science
wUNIVERSITY OF TORONTO

allowed inference

At this point you've been introduced to some rules of inference, that allow
you to reach conclusions in certain situations. You may use these (see
pages 44-46 of the course notes) to guide your thinking, or as marginal
notes to justify certain steps:

conjunction elimination: If you know(A A B,)you can conclude A
separately (or B separafely). -
(%01 0o viouo ?

existential instantiation: If you know thaw,_P_(ﬁ),Lthse?\ﬁu can
certainly pick an element with that property, Ie S‘chp,e :(
/ K €X,P(K). =+ Then LeN, n =24+ HK?
A Rex Prey. Thin e Cadesiy® ‘O
-A

disjunction elimination: If you know A V B, the additional informatio

(&Suﬂd R allows you to conclude B. A @ Tt

Qwr:nplication elimination: If you know A = B, the additional information A
allows you to conclude B. On the other hand, the MA)
dditional inf tion —B all t lude —A. 7
additional information allows you to conclude e

universal elimination: If you know Vz € X, P(z), the additional
information a € X allows you to conclude P(a). & compuescience

& UNIVERSITY OF TORONTO

more inferences

Here are some rules that allow you to introduce new logical
strucfures -, - ra-y‘&q ‘ iy

it %/WJ S ¢ “asr? B

implication introduction: If you assume A and, under that

assumption, B follows, than you can conclude
A= B.

Wit

universal introduction: If you assume that a is a generic
Lf;‘“””:(,EP\ element of D and, under that assumption, derive
g « P(a), then you can conclude Va € D, P(a).

existential introduction:_If you show z € X and you show

%Q’i’é—\l/P(x), then you can conclude 3z € X, P(z).

4 Pl
conju(;lcftion introduction: If you know A and you know B, then

you can conclude A A B.

disjunction introduction: If you know A you can conclude
AV B. & SRR 5% Toronto

sorting strategies

Which algorithm do you use to sort a 5-card euchre hand?
. . Badix -
insertion sort I
» \gelection sor
//\ A

» some other sort? <. e (74§of+

If you use one of the first two, the number of “steps” you
execute will more than quadruple if you graduate from euchre
to a 13-card bridge hand.

If you were enough of a virtuoso to use mergesort or quicksort
on your cards, the change from euchre to bridge would roughly
double your work.

We are most interested in how quickly running-time grows with

the size of the problem, since these quickly swamp

constant-factor differences between algorifthms that are of the

same “order.” Wi on) WO GRS, ononro

different, but the same? \DCWG/J(.
O

Suppose you could count the required by an algorithm
in some sort of platform-independent way. You would find that

the steps required for insertion sort and selection sort on lists of
size n were no more than some quadratic functions of n

To a computer scientists, even though they may vary by
substantial constant factors, all quadratic functions are the

“same” — they are in O(n?).
g(n) = f(n)=3n%24+50 h(n)=15n2+n

o

3 Computer Science
wUNIVERSITY OF TORONTO

counting costs

want a coarse comparison of algorithms “speed” that ignores
hardware, programmer virtuosity

which speed do we care about: best, worst, average? why?

define idealized “step” that doesn’t depend on particular
hardware and idealized “time” that counts the number of steps
for a given input.

&

F Computer Science
EUNIVERSITY OF TORONTO

linear search

def LS(A,x)

""" Return index i such that x == L[i]. Otherwise, ref
1. i=0
2. while i < len(A)
3. if A[i] == x :
4, return i
5. i=1+1
6. return -1

Trace LS([2,4,6,8],4), and count the time complexity
tus([2,4,6,8],4)
What is #15(4, z), if the first index where z is found is 57

&

What is #15(A4,) is z isn’t in A at all? G Gompuer Scince o

worst case

denote the worst-case complexity for program P with input z € I, where
the input size of z is n as Wp(n) = max{tp(z) | ¢ € I Asize(z) = n}

The upper bound Wp € O(U) means

JeeRY,IBeN,VneN,n > B

= max{tp(z) | z € I Asize(z) = n} < cU(n)

That is: Jc € R",3B € N,Vz € I,size(z) > B
= tp(z) < cU(size(z))

The lower bound Wp € (L) means

JceRY,IBEN,YREN,n > B

= max{tp(z) | z € I Asize(z) = n} > cL(n)
Thatis: Jc € RT,IBeN,vn e N,n > B

= 3dz € I,size(z) = n A tp(z) > cL(n)

&
. Computer Scienc
UNIVERSITY OF TORONTO

bounding a sort

def IS(A)
""" TIS(A) sorts the elements of A in non-decreasing or«
i=1
while i < len(A)
t = A[i]
j=1
while j > O and A[j-1] > t :
A[j]1 = A[j-1] # shift up
j=31
Afj] = ¢
i=i+1

© 00N Ok wh e

Computer Science
NIVERSITY OF TORONTO

I want to prove that Wig € O(n?).

G
)

Notes §n e, Tl =T(n)

MW\J Mi/
Ouagens 1 (n

\ &GS
Then h="Fet

“Tha nz—: (154(\2.—_ LMG‘ZH‘H-H =~ _
= F(7% 4 20) +1 # e ool
Thon J(, €N, n2Fi e 4,7 (=242 € N /

9 XN ,l,‘ /
% /{/Z‘[5 # JL{'V\ !

Condid Teny = T} # sasund] f e
Conchude Fae N, T n) = T(w)#

Wml/ ne IN’ ;t
@
Computer Science
regowldl. & Summesios: omonmo

\/Vlé ”\J/ T(ﬂ?‘B %TCM_

Notes A,Igﬁrm/"a
\Dﬂ 3'46”\() T(MQB/\,FIT(I\S

Pk n - L TThow ne N

T v = 36 ,,

Then ’Jli,cn\f) WZ- 7o+ # c=5 S works
7.0+C=#i

w7(§,ﬂéw)n:¢{¢+1>ﬁ'o(ij - [
1/ nZ —_ Qe
e T AT TR, # Omipss

