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get wrong right

Be careful proving a claim false. Consider the claim, for some
suitably defined X, Y and P, Q:

S : Vz € X,Vy € Y,P(z,y) = Q(z,vy)

To disprove S, should you prove:

Ve X,Vy € Y,P(z,y) = —Q(z,y)

Vo veVge‘() ?(9(,\7\/\762(46)(7)

What about

Vz e X,Vy € Y, (P(z,y) = Q(z,v))

Explain why, or why not.

1 -
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Define T'(n) by:
Vn € N T(n)e B eN,n="Ti+1

Take some scrap paper, @ Writename on it, and fill in
as much of the proof of the following claim as possible:

Vn €N, T(n) = T(n?)

Now fill in as much of the disproof of the following claim as
possible: -
Vn €N, T(n?) = T(n)
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allowed inference

At this point you've been introduced to some rules of inference, that allow
you to reach conclusions in certain situations. You may use these (see
pages 44-46 of the course notes) to guide your thinking, or as marginal
notes to justify certain steps:

conjunction elimination: If you know(A A B,)you can conclude A
separately (or B separafely). -
( %01 0o viouo ?

existential instantiation: If you know thaw,_P_(ﬁ),Lthse?\ﬁu can
certainly pick an element with that property, Ie S‘chp,e :(
/ K €X,P(K). =+ Then LeN, n =24+ HK?
A Rex Prey. Thin e Cadesiy® ‘O
-A

disjunction elimination: If you know A V B, the additional informatio

(&Suﬂd R allows you to conclude B. A @ Tt

Qwr:nplication elimination: If you know A = B, the additional information A
allows you to conclude B. On the other hand, the MA)
dditional inf tion —B all t lude —A. 7
additional information allows you to conclude e

universal elimination: If you know Vz € X, P(z), the additional
information a € X allows you to conclude P(a). & compuescience
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more inferences

Here are some rules that allow you to introduce new logical
strucfures -, - ra-y‘&q ‘ iy

it %/WJ S ¢ “asr? B

implication introduction: If you assume A and, under that

assumption, B follows, than you can conclude
A= B.

Wit

universal introduction: If you assume that a is a generic
Lf;‘“””:( ,EP\ element of D and, under that assumption, derive
g « P(a), then you can conclude Va € D, P(a).

existential introduction:_If you show z € X and you show

%Q’i’é—\l/P(x), then you can conclude 3z € X, P(z).

4 Pl
conju(;lcftion introduction: If you know A and you know B, then

you can conclude A A B.

disjunction introduction: If you know A you can conclude
AV B. & SRR 5% Toronto



sorting strategies

Which algorithm do you use to sort a 5-card euchre hand?
. . Badix -
insertion sort I
» \gelection sor
//\ A

» some other sort? <. e (74§of+

If you use one of the first two, the number of “steps” you
execute will more than quadruple if you graduate from euchre
to a 13-card bridge hand.

If you were enough of a virtuoso to use mergesort or quicksort
on your cards, the change from euchre to bridge would roughly
double your work.

We are most interested in how quickly running-time grows with

the size of the problem, since these quickly swamp

constant-factor differences between algorifthms that are of the

same “order.” Wi on ) WO GRS, ononro



different, but the same? \DCWG/J( .
O

Suppose you could count the required by an algorithm
in some sort of platform-independent way. You would find that

the steps required for insertion sort and selection sort on lists of
size n were no more than some quadratic functions of n

To a computer scientists, even though they may vary by
substantial constant factors, all quadratic functions are the

“same” — they are in O(n?).
g(n) = f(n)=3n%24+50 h(n)=15n2+n
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counting costs

want a coarse comparison of algorithms “speed” that ignores
hardware, programmer virtuosity

which speed do we care about: best, worst, average? why?

define idealized “step” that doesn’t depend on particular
hardware and idealized “time” that counts the number of steps
for a given input.
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linear search

def LS(A,x)

""" Return index i such that x == L[i]. Otherwise, ref
1. i=0
2. while i < len(A)
3. if A[i] == x :
4, return i
5. i=1+1
6. return -1

Trace LS([2,4,6,8],4), and count the time complexity
tus([2,4,6,8],4)
What is #15(4, z), if the first index where z is found is 57

&

What is #15(A4, ) is z isn’t in A at all? G Gompuer Scince o



worst case

denote the worst-case complexity for program P with input z € I, where
the input size of z is n as Wp(n) = max{tp(z) | ¢ € I Asize(z) = n}

The upper bound Wp € O(U) means

JeeRY,IBeN,VneN,n > B

= max{tp(z) | z € I Asize(z) = n} < cU(n)

That is: Jc € R",3B € N,Vz € I,size(z) > B
= tp(z) < cU(size(z))

The lower bound Wp € (L) means

JceRY,IBEN,YREN,n > B

= max{tp(z) | z € I Asize(z) = n} > cL(n)
Thatis: Jc € RT,IBeN,vn e N,n > B

= 3dz € I,size(z) = n A tp(z) > cL(n)
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bounding a sort

def IS(A)
""" TIS(A) sorts the elements of A in non-decreasing or«
i=1
while i < len(A)
t = A[i]
j=1
while j > O and A[j-1] > t :
A[j]1 = A[j-1] # shift up
j=31
Afj] = ¢
i=i+1
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I want to prove that Wig € O(n?).
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Notes §n e, Tl =T(n)
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