CSC165 fall 2014

Mathematical expression

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cs.toronto.edu/~heap/165/F14/
416-978-5899

Course notes, chapter 5

o
% UN[VERSITY OF TORONTO

http://www.cs.toronto.edu/~heap/165/F14/
http://www.cs.toronto.edu/~heap/165/F14/notes.pdf

Outline

infinities and functions

Induction

notes

annotated slides

o
Compurer Science
UNIVERSITY OF TORONTO

recall f : N — {even natural numbers}
f(n) =2n is onto and 1-1

o
§ UN[VERSITY OF TORONTO

countable is listable:

A set is countable if, and only if, it can be described as a list:

nGN‘—>‘f(n)
0 — 0
1 — 2
2 — 4
3 — 6
4 — 8

Correspondence to N is built in to a list — each item has a
position, corresponding to some element of N

&

F Computer Science
wUNIVF,RSITY OF TORONTO

rational numbers, (Q are countable
Show a list, i.e. some f : N +— Q that is onto

Cantor’s example
To show that the set of infinite decimals in [0, 1] was bigger
than the natural numbers, Cantor showed that any so-called list
of these numbers would always miss entries (to make

representations unique, no infinite strings of 9s are allowed in
the list):

H list position | decimal H

0 0.000000000000- - -
1 0.010101010101- - -
2 0.012012012012- - -
3 0.012301230123- - -

No matter how you try to generate the list it will omit the

number formed by taking ’0.” and then traversing the diagonal

and changing the digit by adding 1 (if it’s less than 5), and
subtracting 1 (if it’s 5 or greater).

This means that the real numbers (which contain [0, 1])%3:@;@;% oronto
larcer infinitv than the natural numbers!

two specifications of a function

A precise, but infeasible, specification of a function is its
behaviour on every input:

def f(n)
if n == 0 : return 3
if n == 1 : return 4
if n == 2 : return 5
...
if n == "foo" : # throw a type error

Or you could write a procedure to compute its behaviour:

def f(n)
return n + 3

There are more ways to do the former than the latter. So many
more that they don’t match up...! 2

F Computer Science
WUNIVERSITY OF TORONTO

how many python functions?

Every python function can be written in UTF-8, as a string of
characters and whitespace out of 256 characters to define a
function:

def f(n)
return n + 3

Each string can be converted to a different number by treating
each character as a digit in base 256. This gives us an onto
function from N to the set of python programs — there are
countably many python functions.

&

F Computer Science
wUNIVF,RSITY OF TORONTO

diagonalization

Make a column of each of the countably many python functions. In each

row, list the behaviour of whether that function halts or loops given another
function as input:

If you toggle the diagonal — switch loops to halts and vice-versa — you
will get the behaviour of a “function” that can’t possibly be on the list —

navel_gaze. There are more (a larger infinity) of behaviours than python

functions.

&

Function f | H(£,0) | H(ff1) | H(ff2) | H(f, £3) | H(f, f4) | H(£ f5) | H(f, £6)
fo halts halts halts halts halts halts halts
fl loops loops loops loops loops loops loops
2 halts loops halts loops halts loops halts
3 halts loops loops halts loops loops halts

% Computer Scienc
UNIVERSITY OF TORONTO

principle of simple induction

Suppose P(n) is a predicate of the natural numbers. If P...
» starts out true, i.e. P(0), and

» the truth of P transfers from each number to the next, i.e.
Vn € N, P(n) = P(n+ 1), then

.. we believe P is true for all natural numbers, i.e.
vn €N, P(n).

&

F Computer Science
WUNIVERSITY OF TORONTO

nearly the principle of simple induction:

For which table is Vn € N, P(n) = P(n + 1) false?

n ‘ P(n) n ‘ P(n) n ‘ P(n) n ‘ P(n)
0 | True 0 | False 0 | True 0 | False
1 | True 1 | False 1 | True 1 | False
2 | True 2 | False 2 | False 2 | True
3 | True 3 | False 3 | True 3 | True
4 | True 4 | False 4 | True 4 | True
5 | True 5 | False 5 | True 5 | True

&

F Computer Science
WUNIVERSITY OF TORONTO

tweak simple induction

The fourth table on the previous slides suggests a small
modification

Suppose P(n) is a predicate of the natural numbers. If P...
» starts out true, i.e. P(k), some k € N,

> the truth of P transfers from each number, starting at &, to
the next, i.e. Vn € N,n > k = (P(n) = P(n + 1)), then

.. we believe P is true for all natural numbers greater than or
equal to k, i.e. Vn e Nyn > k = P(n).

&

F Computer Science
wUNIVF,RSITY OF TORONTO

illustrative example
P(n):3">n?

Write out the inductive hypothesis (IH) first, and try to
construct an argument that gets us from P(n) to P(n + 1)
(inductive step):

&

3 Computer Science
WUNIVERSITY OF TORONTO

example continued...
P(n):3">n?

Take notice of which case(s) P(n) is true for, but are not
covered by the inductive step. These are base cases, and must
be proved without induction.

&

3 Computer Science
WUNIVERSITY OF TORONTO

simple induction principle...

We end up with:

[P(3)A(Vn € N,n >3 = [P(n)= P(n+1)])]
= [Vn € N,n >3 = P(n)]

That’s what induction gets us. P(0), P(1), and P(2) are
verified separately.

&

3 Computer Science
WUNIVERSITY OF TORONTO

another example
P(n): ZZ; 2i < g+

another example continued...
P(n): E:ig 2t < ontt

Notes

&
Compurer Science
UNIVERSITY OF TORONTO

annotated slides

» monday’s annotated slides
» wednesday’s annotated slides

» friday’s annotated slides

&
Compurer Science
/ UNIVERSITY OF TORONTO

http://www.cdf.toronto.edu/~heap/165/F14/Lectures/W12/monday-annotated.pdf
http://www.cdf.toronto.edu/~heap/165/F14/Lectures/W12/wednesday-annotated.pdf
http://www.cdf.toronto.edu/~heap/165/F14/Lectures/W12/friday-annotated.pdf

	infinities and functions
	Induction
	notes
	annotated slides

