
CSC165 fall 2014
Mathematical expression

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cs.toronto.edu/~heap/165/F14/

416-978-5899

Course notes, chapter 5

http://www.cs.toronto.edu/~heap/165/F14/
http://www.cs.toronto.edu/~heap/165/F14/notes.pdf

Outline

in�nities and functions

Induction

notes

annotated slides

recall f : N 7! feven natural numbersg
f (n) = 2n is onto and 1{1

countable is listable:

A set is countable if, and only if, it can be described as a list:

n 2 N �! f (n)

0 �! 0

1 �! 2

2 �! 4

3 �! 6

4 �! 8
...

...
...

Correspondence to N is built in to a list | each item has a

position, corresponding to some element of N

rational numbers, Q are countable
Show a list, i.e. some f : N 7! Q that is onto

Cantor's example
To show that the set of in�nite decimals in [0; 1] was bigger

than the natural numbers, Cantor showed that any so-called list

of these numbers would always miss entries (to make

representations unique, no in�nite strings of 9s are allowed in

the list):
list position decimal

0 0.000000000000� � �

1 0.010101010101� � �

2 0.012012012012� � �

3 0.012301230123� � �
...

...
No matter how you try to generate the list it will omit the

number formed by taking '0.' and then traversing the diagonal

and changing the digit by adding 1 (if it's less than 5), and

subtracting 1 (if it's 5 or greater).

This means that the real numbers (which contain [0; 1]) are a

larger in�nity than the natural numbers!

two speci�cations of a function

A precise, but infeasible, speci�cation of a function is its

behaviour on every input:

def f(n) :

if n == 0 : return 3

if n == 1 : return 4

if n == 2 : return 5

...

if n == "foo" : # throw a type error

Or you could write a procedure to compute its behaviour:

def f(n) :

return n + 3

There are more ways to do the former than the latter. So many

more that they don't match up. . . !

how many python functions?

Every python function can be written in UTF-8, as a string of

characters and whitespace out of 256 characters to de�ne a

function:

def f(n) :

return n + 3

Each string can be converted to a di�erent number by treating

each character as a digit in base 256. This gives us an onto

function from N to the set of python programs | there are

countably many python functions.

diagonalization

Make a column of each of the countably many python functions. In each

row, list the behaviour of whether that function halts or loops given another

function as input:

Function f H(f,f0) H(f,f1) H(f,f2) H(f, f3) H(f, f4) H(f, f5) H(f, f6) H(f, f7) . . .

f0 halts halts halts halts halts halts halts halts . . .

f1 loops loops loops loops loops loops loops loops . . .

f2 halts loops halts loops halts loops halts loops . . .

f3 halts loops loops halts loops loops halts loops . . .
...

...
...

...
...

...
...

...
...

...

If you toggle the diagonal | switch loops to halts and vice-versa | you

will get the behaviour of a \function" that can't possibly be on the list |

navel_gaze. There are more (a larger in�nity) of behaviours than python

functions.

principle of simple induction

Suppose P(n) is a predicate of the natural numbers. If P ...

I starts out true, i.e. P(0), and

I the truth of P transfers from each number to the next, i.e.

8n 2 N;P(n)) P(n + 1), then

... we believe P is true for all natural numbers, i.e.

8n 2 N;P(n).

nearly the principle of simple induction:

For which table is 8n 2 N;P(n)) P(n + 1) false?

n P(n) n P(n) n P(n) n P(n)

0 True 0 False 0 True 0 False

1 True 1 False 1 True 1 False

2 True 2 False 2 False 2 True

3 True 3 False 3 True 3 True

4 True 4 False 4 True 4 True

5 True 5 False 5 True 5 True
...

...
...

...
...

...
...

...

tweak simple induction

The fourth table on the previous slides suggests a small

modi�cation

Suppose P(n) is a predicate of the natural numbers. If P ...

I starts out true, i.e. P(k), some k 2 N,

I the truth of P transfers from each number, starting at k , to

the next, i.e. 8n 2 N;n � k) (P(n)) P(n + 1)), then

... we believe P is true for all natural numbers greater than or

equal to k , i.e. 8n 2 N;n � k) P(n).

illustrative example
P(n) : 3n � n3

Write out the inductive hypothesis (IH) �rst, and try to

construct an argument that gets us from P(n) to P(n + 1)

(inductive step):

example continued...
P(n) : 3n � n3

Take notice of which case(s) P(n) is true for, but are not

covered by the inductive step. These are base cases, and must

be proved without induction.

simple induction principle...

We end up with:

[P(3) ^ (8n 2 N;n � 3) [P(n)) P(n + 1)])]

) [8n 2 N;n � 3) P(n)]

That's what induction gets us. P(0);P(1), and P(2) are

veri�ed separately.

another example
P(n) :

P
i=n

i=0
2i � 2n+1

another example continued...
P(n) :

P
i=n

i=0
2i � 2n+1

Notes

annotated slides

I monday's annotated slides

I wednesday's annotated slides

I friday's annotated slides

http://www.cdf.toronto.edu/~heap/165/F14/Lectures/W12/monday-annotated.pdf
http://www.cdf.toronto.edu/~heap/165/F14/Lectures/W12/wednesday-annotated.pdf
http://www.cdf.toronto.edu/~heap/165/F14/Lectures/W12/friday-annotated.pdf

	infinities and functions
	Induction
	notes
	annotated slides

