CSC165 Fall 2014, Assignment #2

sample solutions

1. For z € R, define |z| by:
lz| €ZA|z)| <zA(Nz€Zz<z=2<|z])

... where Z stands for the set of integers, and R stands for the set of real numbers. Use the definition
of |z] to prove or disprove each of the following claims, using the structured proof technique from this
course. Note: You must use the definition given here, not some other (possibly equivalent) definition
for |z].

Claim 1.1:
VzeRVy e R,z >y = |z] > |yl

Sample solution: This claim is true. It says if a real number z is larger than another real number
y, then z’s floor cannot be smaller than y’s floor. We present two proofs here, one directly
uses the definition, the other uses contradiction.

Proof directly using definition:
Assume z € R,y € R # generic real numbers

Assume z > y # the antecedent
then y < = # reverse the inequality
and |y| <y # by definition of |y|
then |y| < z # transitivity of inequality, |y| <y <z
and |y| € Z # by definition of |y
then |y| < |z| # by definition of |z]
then |z| > |y| # reverse the inequality

then £ > y = |z] > |y| # introduce antecedent

then Vz € R,Vy € R,z > y = |z] > |y| # introduce V

Proof by contradiction:
Assume —(Vz € R,Vy € R,z >y = |z| > |y]) # for the sake of contradiction

then 3z € R,y € R, (z > y) A (|z] < |y]) # the negation
Let 2o € R,yo € R be such that (zo > yo) A (|zo] < |¥o))

then |zo]| < |yo| # conjunction elimination



and |zo| € Z, |yo] € Z # by definition of floor
then |zo] +1 < |yo| # the smallest possible difference between two distinct integers is 1
then |zg] + 1 < yo # since |yo| < yo by definition of |yg]
then |zg| + 1 < zo # since yo < zo as how zg and yo are picked
and |zo| +1€Z # |zp] € Zand 1 € Z
then |zg] + 1 < |zg| # by definition of |zg]| that Vz € Z,z < 2y = 2z < |z0]
then 1 < 0 # subtract |zg] from both sides, and contradiction with that 1 > 0
then Vz € R,Vy € R,z > y = |z]| > |y| # negation of assumption because of contradiction

Claim 1.2:
Vz € R,Ve e RT,3d e RT,Vw e R, |z —w| < d=||z] — |w]| <e

Sample solution: This claim is false. Intuitively, this claim says for all z, when w is getting really
really close to z then |w| gets arbitrarily close to |z|. This is not quite true because, for
example, 3.9999 is really close to 4 but [3.9999| = 3 is not that close at all to |4| = 4. So we
will prove the negation of this claim which is

Jz eR,Je e RT,Vd e RT,Fw € R, (Jz — w| < d) A (||z] — [w]| >€)

Proof:
Pick z =4,e=10.5then z € R and e € RT

Assume d € RT # a generic positive real number

Pick w =4 —0.9d

then |2 —w|=]4—-(4-0.9d)| =09d < d

and w < 4 # add 4 to both sides of —0.9d < 0

then |w| <3 # |w] <w< 4

also |z| = 4] =4

then |z| — |lw| >4—-3=1>05=e# —|w] > -3

then |z| — |w]| > e # transitivity of inequality

then ||z]| — |w]|| > e # absolute value of a positive number

then (Jz — w| < d) A (||z] — |w]| > e) # conjunction introduction
then Vd € RT,Jw € R, (|]z — w| < d) A (||z] — |w]| > e) # introduce V

then 3z € R,Je € RT,Vd € R, 3w € R, (|]z — w| < d) A (||z] — |w]| > e) # introduce 3

Claim 1.3:
JzeR,Vee RT,Ide R, Vw e R, |z —w|<d=||z] — |w]| <e

Sample solution: This claim is true. It says that there exists a point z such that when w gets
really close to z, |w] gets arbitrarily close to |z|. From the previous proof, we learned that
points like = 4 are not good examples because the floor function is not continuous (or, is
“jumping”) at these points; however, any other points except these “jumping” points would
be continuous and valid examples for this claim, such as z = 4.5.



Proof:
Pick 2 = 4.5, then 2 € R

Assume e € RT # a generic positive real number
Pick d = 0.49, then d € R™
Assume w € R # a generic real number
Assume |z — w| < d # assume the antecedent of the =
then - d<w—-z<d# |z|]<ae -a<z<a
thenz—-d<w<z+d
then 4.01 < w < 4.99 # z =4.5,d=0.49
then |w| = 4 # by definition of floor
and |z| = |4.5] =4 # z = 4.5 as picked and definition of floor
then ||z| — |w]|=14—4| =0
then ||z] — |w|| <e # e€ RT
then |z —w| < d = ||z| — |w]| < e # introduce antecedent
then Vw € R, |z —w| < d = ||z] — |w]| < e # introduce V
then 3d € RT,Vw € R, |z — w| < d = ||z] — |w]| < e # introduce 3
then Ve € Rt3d € RT,Vw € R, |z —w| < d = ||z] — |w]| < e # introduce V
then 3z € R,Ve € RT™3d € R™,Vw € R, |z — w| < d = ||z| — |w]| < e # introduce J
Claim 1.4:
JzeR, |z +1] #|z|+1

Sample solution: This claim is false. We will prove the negation of this statement which is.
VeeR,|lz+1] =|z|+1

We will prove the equality a = b by proving (a < b) A (b < a). The key is to make wise use
of the definition of the floor, especially the “2 < z = z < |z]” part.

Proof:

Assume z € R # a generic real number z

then |z| < z # by definition of |z]
then |z] +1 <z + 1 # add 1 to both sides
then |z| +1 < |z + 1] # |z] + 1 € Z and by definition of [z + 1]
also |z + 1] <z + 1 # by definition of |z + 1]
then |z + 1] — 1 < z # subtract 1 from both sides
then |z + 1| — 1< |z| # [z + 1] — 1 € Z and by definition of |z]
then |z + 1] < |z] + 1 # add 1 to both sides
then (|z| +1< |z+1|)A(lz+1] < |z] + 1) # conjunction introduction
then [z4+ 1| =|z|+1# (a<bAb<La) & a=b
then Vz € R, [z + 1] = |z| + 1 # introduce V

2. Prove or disprove the claim, and prove or disprove the converse:

Claim 2.1:
vn €N, (3k € Nyn =5k +2) = (37 € N,n® = 55 + 4)



Sample solution: The original claim is true, the proof is similar to what we did in the lectures
and tutorials. The converse of this claim is false, because n = 3,n? = 9 would be a counter-
example.

Proof of the original:
Assume n € N # a generic natural number

Assume Jk € N,n = bk + 2 #£ the antecedent
Let kg € N be such that n = 5kg + 2
then n? = (5ko + 2)? = 25k& + 20ko + 4 = 5(5k3 + 4ko) + 4
Let j = 5k2 + 4ko, then j € N # ko,5,4 € N
then n? =55 + 4
then 35 € N,n? =55 + 4
then (3k € Nyn =5k + 2) = (Elj €N,n? =55 + 4) # introduce antecedent
then Vn € N, (3k € N,n =5k + 2) = (37 € N,n? = 55 + 4) # introduce V

The negation of the converse of the claim is
dneN, (35 eN,n?=5j+4) A= (Fk € N,n =5k +2)

Proof of the negation of converse:
Pick n =3,thenn € N
thenn?=9=5x1+4
then 35 € N,n? =554+4# 1 €N
alson=3=5x0+4+3
then = (3k € N,n = 5k + 2) # uniqueness of remainder
then (Elj € N,n? =55 + 4) A= (3k € N,n = 5k + 2) # conjunction introduction
then In € N, (Elj €N,n? =55 +4) A= (3k € N,n = 5k + 2) # introduce 3
Claim 2.2:

Vm,neN,(FkeNm =Tk +3)A(FjEN,n=774+4)= (Fx € N,mn =Tt + 5)

Sample solution: The original claim is true. The converse of this claim is false, because we can
easily find a counter-example such as m = 1,n = 5.

Proof of the original:
Assume m,n € N # two generic natural numbers

Assume (Jk € Nym =Tk + 3) A (35 € N,n =75 + 4) # the antecedent
Let k9 € N be such that m = Tkg + 3, and jg € N be such that n = 779 + 4
then mn = (7kg + 3)(7jo + 4) = 49kgjo + 28kg + 2150 + 12

= 7(Tkojo + 4ko + 3jo + 1)+ 5

Let 2 = Tkojo + 4kg + 3jo + 1
then mn =Tt +5
then e Nymn=71+5

then (3k e Nm =7k +3)A (37 eN,n=774+4)= (Fre N,mn =Tt +5)

then Vm,n e N,(Fk e NNm =7k +3)A(FjeN,n =77 +4) = (L € N,mn =Tt +5)



The negation of the converse of the claim is
ImneN,(TLeNmMmn=Ti+5)A[~(FkeEN,m=Tk+3) V(37 EN,n="77+4)]

Proof of the negation of converse:
Pick m =1,n =5, then m,n € N
then mn=1x5=5=7x0+5
then e Nymn=71+5# 0€N
alsom=1=7x0+1
then = (3k € N,m = 7k + 3) # uniqueness of remainder
then = (Ik € N,m =7k +3) V(37 € N,n = 75 + 4) # disjunction introduction
then (Zre NNmn=Ti+5)A[~(Fk e NNm =7k +3) V(37 e N,n =77 + 4)]
then Im,n e N,(FL e NNmn =71+ 5)A [ (Fk e NNm =7k +3) V(37 € N,n =77 + 4)]
# introduce 3



