CSC 165

bounds
week 9, lecture 1
Danny Heap
heap@cs.toronto.edu

www.cdf.toronto.edu/~heap/165/F09 Wacky Wed- what about tulorials, stay tuned. A2- getting closer... $f(c) \leq + 10^{f(c)} = c \qquad \forall n \in \mathbb{N},$ $\text{We've proved: } P(n) : 2^n \geq 2n \qquad n^2, n^3, n \neq 0$ $\forall c \in \mathbb{R}, \forall \beta \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq \beta \land 2^n \geq c \end{cases}$ $\forall \beta \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq \beta \land 2^n \geq c \end{cases}$ assume $C \in \mathbb{R}^+$, assume $B \in \mathbb{N}$. Choose $N = 2[\lceil \log C \rceil + B + 1]$ Then $n \in \mathbb{N}$ $\# \lceil \log C \rceil \in \mathbb{N}$, $B, I, \in \mathbb{N}$, \mathbb{N} closed under +Then $n \ge B$ Then $2^n = 2^{n/2} 2^{n/2}$ # P(N/2), N/2 GTN $\geq 2^{n/2}$. \cap # 12> log C # by choice of h > cn # 2x monotonic (strictly) $\lim_{\chi \to \infty} \frac{2^{\hat{}}}{\chi}$ $2 \log X = \chi \qquad \text{slide 2}$

scratch

bounded below

Notice that the definition of big-Omega differs in just one character from big-Oh:

$$\Omega(g) = \{f: \mathbb{N} \mapsto \mathbb{R}^{\geq 0} \mid \exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, orall n \in \mathbb{N}, n \geq B \Rightarrow f(n) \geq cg(n) \}$$

The rôle of B is, as with big-Oh, to act as a breakpoint, so comparisons don't have to start at the origin

The rôle of c is to scale q down below f.

If you're proving $f \in \Omega(g)$, you get to choose c and B to suit your proof.

one last bound

It often happens that functions are bounded above and below by the same function. In other words, $f \in \mathcal{O}(G) \land f \in \Omega(g)$. We combine these two concepts into $f \in \Theta(g)$.

$$\Theta(g) = \{f: \mathbb{N} \mapsto \mathbb{R}^{\geq 0} \mid \exists c_1 \in \mathbb{R}^+, \exists c_2 \in \mathbb{R}^+, \exists B \in \mathbb{N}, orall n \in \mathbb{N}, n \geq B \Rightarrow c_1 g(n) \leq f(n) \leq c_2 g(n) \}$$

You might want to draw pictures, and conjecture about values of c_1, c_2, B for $f = 5n^2 + 15$ and $g = n^2$.

$$f = \{f : \mathbb{N} \to \mathbb{R}^{\geq 0}\}$$
 some theorems
How do you deal with a general statement about two functions:

How do you deal with a general statement about two functions: $(f\in \mathcal{O}(g)\wedge g\in \mathcal{O}(h))\Rightarrow f\in \mathcal{O}(h)$

assume f, g, h \in f'
assume f \in O(g) \land g \in O(h) $\not\equiv$ onlecedent

Then \exists c \in IR, \exists B, \forall n \in IN, n \ni B \Rightarrow fin) \leq c g(h) $(\not\equiv)$ Choose C, \in IR, B, \in IN, st \forall n \in N, n \ni B, \Rightarrow fin) \leq C, g(h) $(\not\equiv)$ Then I c ERt, I BEN, YNEIN, hZB => g(n) E Ch(n) Choose czert, Bz EIN, Vn EIN, n > Bz => g(n) < Cz h(n) Choose C' = C, Cz. Then $C' \in \mathbb{R}^+$ Choose B' = max(B, Bz)Choose B' = max(B, Bz)Then $\forall n \in \mathbb{N}, n \geq B' \Rightarrow f(n) \leq C_1 = f(n)$ $\forall n \in \mathbb{N}, n \geq B' \Rightarrow f(n) \leq C_1 \leq h(n)$ $\forall n \in \mathbb{N}, n \geq B' \Rightarrow f(n) \leq C_1 \leq h(n)$

Then fed(h) By

scratch

How about: $g \in \Omega(f) \Leftrightarrow f \in \mathcal{O}(g)$

scratch