CSC 165

indirect proof

Danny Heap

heap@cs.toronto.edu

www.cdf.toronto.edu/~heap/165/F09

implication not symmetrical

ullet proving that $p\Rightarrow q$ involves finding a chain of intermediate results $p\Rightarrow p_1\Rightarrow \cdots\Rightarrow p_n\Rightarrow q$ what happens if your search is unlucky?

• try reversing the search, use the contrapositive recall that $p\Rightarrow q$ is true exactly when $\neg q\Rightarrow \neg p$ proving one proves the other

ullet for example, how would you go about proving $orall n\in \mathbb{N}, n^2 ext{ odd } \Rightarrow n ext{ odd}$

direct proof difficult here

• You could get python to verify this for lots of natural numbers for n in range(0,1000):

$$n * n \% 2 == 0 \text{ or } n \% 2 == 1$$

but that's pretty lame

• or, imitate the direct proof of the converse:

Assume $n \in \mathbb{N}$,

Assume n^2 is odd. Then $\exists k \in \mathbb{N}, n^2 = 2k+1 \ \#$ definition of odd hmmm...should we take the square root of 2k+1 or what????

Prove $\forall n \in \mathbb{N}, n^2 \text{ odd } \Rightarrow n \text{ odd}$

same as: Prove $\forall n \in \mathbb{N}, \neg n \text{ odd } \Rightarrow \neg n^2 \text{ odd}$

scratch

getting contradictory

what happens if you want to prove q,
so you'd like some well-known p to imply q,
but you can't decide which p is right for the job?

ullet why not just take the entire sum of well-known facts as your antecedent $p_0 \wedge p_1 \wedge p_2 \wedge \cdots \wedge p_n \Rightarrow q$

• how does this help? this is equivalent to saying that $\neg q$ implies that some well-known fact is false — contradiction! $\neg q \Rightarrow \neg p_0 \lor \neg p_1 \lor \neg p_2 \lor \dots \lor \neg p_n$

there are infinitely many prime numbers

 $ullet P = \{n \in \mathbb{N} \mid n ext{ has exact 2 factors in } \mathbb{N} \}$ Claim SP: $orall n \in \mathbb{N}, |P| > n.$ Prove by contradiction.

scratch

format of contradiction

```
• Assume \neg q within the assumption, follow a chain of implications : arrive at a contradiction of some already-known fact Conclude q, since assuming \neg q led to a contradiction.
```

coursework proposal

 look over the proposed course calendar at www.cdf.toronto.edu/~heap/165/F09 and be prepared to vote on Friday October 23rd

scratch