CSC 165

indirect proof
Danny Heap

heap@cs.toronto.edu

www.cdf.toronto.edu/~heap/165/F09

 $\forall n \in \mathbb{N}, P(n) \Longrightarrow Q(n)$

implication not symmetrical

proving that $p \Rightarrow q$ involves finding a chain of intermediate results

$$p\Rightarrow p_1\Rightarrow \cdots \Rightarrow p_n\Rightarrow q$$
 what happens if your search is unlucky?

79 => 97

try reversing the search, use the contrapositive recall that $p\Rightarrow q$ is true exactly when $\neg q\Rightarrow \neg p$ proving one proves the other

 $\forall n \in \mathbb{N}, n \text{ even}$ $\Rightarrow n^2 \text{ even}$

for example, how would you go about proving $\forall n \in \mathbb{N}, n^2 \text{ odd } \Rightarrow n \text{ odd}$

direct proof difficult here

You could get python to verify this for lots of natural numbers for n in range(0,1000):

but that's pretty lame

or, imitate the direct proof of the converse:

 \longrightarrow Assume $n \in \mathbb{N}$,

Assume n^2 is odd. Then $\exists k \in \mathbb{N}, n^2 = 2k+1 \ \#$ definition of odd hmmm...should we take the square root of 2k+1 or what????

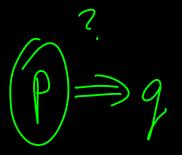
n is even

definition of odd
of 2k + 1 or what????

Prove $\forall n \in \mathbb{N}, n^2 \text{ odd } \Rightarrow n \text{ odd}$ same as: Prove $\forall n \in \mathbb{N}, \neg n \text{ odd } \Rightarrow \neg n^2 \text{ odd}$ Assume $n \in \mathbb{N}$ # generic elt 10 Assume n even # assume antecedent Then $\exists k \in \mathbb{N}$, n = 2k # defin of even Then n^2 is even # con seguren) So n even => n^2 even # assumes,
dereved consequed Conclude & NEW neven = n² even # n was

Conclude & N/2 odd => n odd # controp 65. slide 4

scratch

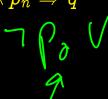


getting contradictory

what happens if you want to prove q, so you'd like some well-known p to imply q, but you can't decide which p is right for the job?

why not just take the entire sum of well-known facts as your antecedent

$$p_0 \wedge p_1 \wedge p_2 \wedge \cdots \wedge p_n \Rightarrow q$$



how does this help? this is equivalent to saying that $\neg q$ implies that some well-known fact is false — contradiction!

$$eg q \Rightarrow
eg p_0 \lor
eg p_1 \lor
eg p_2 \lor \dots \lor
eg p_n$$

there are infinitely many prime numbers

 $P = \{n \in \mathbb{N} \mid n \text{ has exact 2 factors in } \mathbb{N} \}$ Claim SP: $\forall n \in \mathbb{N}, |P| > n$. Prove by contradiction. assume 75P, In EIN, IP & h Then 3 REIN, |P| = R # 0 = R = n let REIN, IPI=R # since it exists Then, can list 21,=2, 1,=3, ..., 1/k-15 Then, $\exists \Gamma \in \mathbb{N}$, $\Gamma = \mathcal{P}_{\sigma} \mathcal{P}_{1} - \dots \mathcal{P}_{R-1} \# \text{ finite prod}$. Then r > 1 # product of 2, 3+ bigger stuff So r+1>1, and $\exists p \in P$ that Livides r+1) trian Som P divides Pr. P. Pkt

scratch

format of contradiction

```
Assume \neg q within the assumption, follow a chain of implications : arrive at a contradiction of some already-known fact Conclude q, since assuming \neg q led to a contradiction.
```

coursework proposal

look over the proposed course calendar at www.cdf.toronto.edu/~heap/165/F09 and be prepared to vote on Friday October 23rd

War 6 excises 3 assign men

scratch