CSC 165

program examples
week 10, lecture 3
Danny Heap
heap@cs.toronto.edu
www.cdf.toronto.edu/~heap/165/F09

counting costs

want a coarse comparison of algorithms "speed" that ignores hardware, programmer virtuosity

which speed do we care about: best, worst, average? why?

define idealized "step" that doesn't depend on particular hardware and idealized "time" that counts the number of steps for a given input.

linear search

```
def LS(A,x) :
    """ Return index i such that x == L[i]. Otherwise, return -1 """

1.    i = 0
2.    while i < len(A) :
3.        if A[i] == x :
4.            return i
5.            i = i + 1
6.    return -1</pre>
```

Trace LS([2,4,6,8],4), and count the time complexity $t_{LS}([2,4,6,8],4)$

What is $t_{LS}(A, x)$, if the first index where x is found is j?

What is $t_{LS}(A, x)$ is x isn't in A at all?

worst case

denote the worst-case complexity for program P with input $x \in I$, where the input size of x is n as

$$W_P(n) = \max\{t_P(x) \mid x \in I \wedge \mathrm{size}(x) = n\}$$

The upper bound $W_P \in \mathcal{O}(U)$ means

$$\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, orall n \in \mathbb{N}, n \geq B \implies \max\{t_P(x) \mid x \in I \land \operatorname{size}(x) = n\} \leq cU(n)$$
 That is: $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, orall x \in I, \operatorname{size}(x) \geq B \implies t_P(x) \leq cU(\operatorname{size}(x))$

The lower bound $W_P \in \Omega(L)$ means

$$\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, orall n \in \mathbb{N}, n \geq B \; \Rightarrow \; \max\{t_P(x) \mid x \in I \land \mathrm{size}(x) = n\} \geq cU(n)$$
 That is: $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, orall n \in \mathbb{N}, n \geq B \; \Rightarrow \; \exists x \in I, \mathrm{size}(x) = n \land t_P(x) \geq cL(n)$

bounding a sort

I want to prove that $W_{\mathrm{IS}} \in \mathcal{O}(n^2)$.

scratch