CSC165 Fall 2009 Assignment 3

due Friday December 4th, 10pm

The aim of this assignment is to give you more practice with big-Oh proofs and algorithm complexity. Your solution should be submitted as a PDF file a3.pdf to the CDF submission site:

https://www.cdf.toronto.edu/students/

You are welcome to work with up to one other partner from this course on this assignment. You indicate a partnership by each partner submitting the file partnerA3 to the CDF submission site. The content of the file should be the CDF userid of your partner.

- 1. Use the proof structure from this course to PROVE or DISPROVE the following claims. Please note that some of the claims are FALSE, and should be disproved.
 - (a) Define $f(n) = 3n^3 + 5n$ and $g(n) = n^4 + 2n^2 + 7$. Claim: $f \in \mathcal{O}(g)$.
 - (b) Use the same f and g from the previous question. Claim: $g \in \mathcal{O}(f)$.
 - (c) Define $f(n) = 7^n + \ln(n)$ and $g(n) = n^3 + n$. Claim: $g \in \Omega(f)$.
 - (d) Let $\mathcal{F} = \{f : \mathbb{N} \to \mathbb{R}^{\geq 0}\}$. Define $\min(f,g)$ as $\forall n \in \mathbb{N}, \min(f,g)(n) = \min(f(n),g(n))$. Claim:

$$\forall f, g, h \in \mathcal{F}, f \in \Omega(h) \land g \in \Omega(h) \Rightarrow \min(f, g) \in \Omega(h)$$

(e) Does it work the other way? Define $\max(f,g)$ as $\forall n \in \mathbb{N}, \max(f,g)(n) = \max(f(n),g(n))$. Claim:

$$\forall f, g, h \in \mathcal{F}, \max(f, g) \in \Omega(h) \Rightarrow f \in \Omega(h) \lor g \in \Omega(h)$$

2. Choose one of the four definitions of f below so that the worst-case running time of the algorithm DL is bounded above and below by the function you chose, that is $W_{\rm DL} \in \mathcal{O}(f) \wedge W_{\rm DL} \in \Omega(f)$. Prove that your bound is correct.

$$f(n) = \log_2(n)$$
 $f(n) = \sqrt{n}$ $f(n) = n$ $f(n) = n^2$

```
def DL(n) :
i = 0
while 2**i < n : i += 1
return i</pre>
```