CSC 148 Winter 2017

Week 10

Efficiency considerations

Bogdan Simion

bogdan@cs.toronto.edu

http://www.cs.toronto.edu/~bogdan

University of Toronto, Department of Computer Science

Bad programmers worry about the code. Good programmers worry about data structures and their relationships.

-- Linus Torvalds

Implicitly, efficiency of algorithms as well!

Outline – this week

Recursion efficiency

Searching

Height analysis

Sorting

• Big-Oh on paper

Redundancy

- Remember recursion:
 - Calculating Fibonacci numbers
 - if n < 2, fib(n) = 1
 - fib(n) = fib(n-1) + fib(n-2)
- Write a recursive program for this..

```
def fib(n):
    """"

Returns the n-th fibonacci number.
    @param int n: a non-negative number
    @rtype: int
    """"

pass
```


Redundancy

- Remember recursion:
 - Calculating Fibonacci numbers
 - if n < 2, f(n) = 1
 - f(n) = f(n-1) + f(n-2)
- Write a recursive program for this..

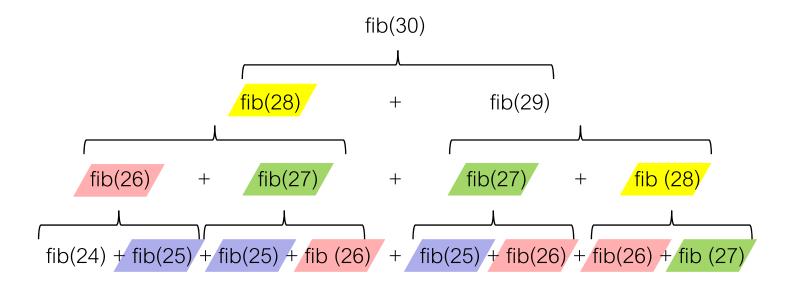
```
def fib(n):
    """"

Returns the n-th fibonacci number.
    @param int n: a non-negative number
    @rtype: int
    """"

if n < 2:
    return 1
    else:
    return fib(n-1) + fib(n-2)</pre>
```


Redundancy

- Unnecessary repeated calculations => inefficient!
- Let's expand the recursion: fib(n) = fib(n-1) + fib(n-2)



How could we avoid calculating items we already calculated?

Solution? Memoize

Keep track of already calculated values

Running out of stack space

 Some programming languages have better support for recursion than others; python may run out of space on its stack for recursive function calls ...

For example, recursively traversing a very long list ...

Recursive vs iterative

- Any recursive function can be written iteratively
 - May need to use a stack too, potentially
- Recursive functions are not more efficient than the iterative equivalent
 - Could be the same, with compiler support..
- Why ever use recursion then?
 - If the nature of the problem is recursive, writing it iteratively can be
 - a) more time consuming, and/or
 - b) less readable

Recursive functions are not more efficient than their iterative equivalent

But .. Recursion is a powerful technique for naturally recursive problems

Efficiency considerations: Search speed

University of Toronto, Department of Computer Science

contains in a list

 Suppose v refers to a number: How efficient is the following statement in its use of time?

```
v in [97, 36, 48, 73, 156, 947, 56, 236]
```

- Roughly how much longer would the statement take if the list were
 - 10 times longer?
 - 1,000 times longer?
 - 1,000,000,000 times longer?
- Does it matter whether we used a built-in Python list or our implementation of LinkedList?

Speed of search

- With either a Python list or a linked list of n elements
 - We must look at elements one by one
 - Each time we eliminate only one element from consideration
 - In the worst case, we look at all n elements
- Either way, it takes time proportional to n

Can we make search in a Python list faster?

add order ...

- Suppose we know the list is sorted in ascending order
 - What strategy would you use to get to the value (if it exists) in a lot less steps than linear search?

How does the running time scale up as we make the list 2, 4, 8, 16,
32, times longer?

Ig (n)

- Key insight: the number of times I repeatedly divide n in half, before
 we are down to 1 element, is the same as the number of times I
 double 1 before I reach (or exceed) n:
 - log₂(n), often known in CS as lg(n)
- For an n-element list, it takes time proportional to n steps to decide
 whether the list contains a value, but only time proportional to lg(n) to
 do the same thing on an ordered list
- What does that mean if n is 1,000,000? What about 1,000,000,000?

Aside: logarithms

- Recall:
 - $log_a x = y <=> a^y = x$
 - Example: $2^5 = 32 <=> \log_2 32 = 5$
 - $log_2(n)$, often known in CS as lg(n) (or sometimes log n)
 - After all, binary is our favorite base .. :)

What about search in a tree?

- How efficient is _contains_ on each of the following:
 - our general Tree class?
 - our general BinaryTree class?
 - our BST class?
- The last case should probably be answered "depends..."

Search speed in Tree or BinaryTree

- Strategy similar to lists:
 - We must look at elements one by one
 - Each time we eliminate only one element from consideration
 - In the worst case, we look at all n elements
- Either way, it takes time proportional to n

What about search in a BST?

- Recall the BST property
 - Exploit the ordering property to go either left or right when searching, but not both
 - => Search is narrowed down to only half of the yet-to-beconsidered parts of the tree
 - If value is not in the tree, search all the way to leaf
 - => Worst case, maximum number of steps is equal to the max height of the tree
 - How big is the height in relation to the number of nodes?

Max nodes for height h

 What is the maximum number of nodes in a binary tree of height h:

- 0?
- 1? 1
- 2?
- 3? 7
- 4? 15
- h? $2^h 1$

Height h based on number of nodes n

- Let's figure out tree height h for a given number of nodes n
- We know that $n \le 2^h 1$

=>
$$n + 1 \le 2^h$$

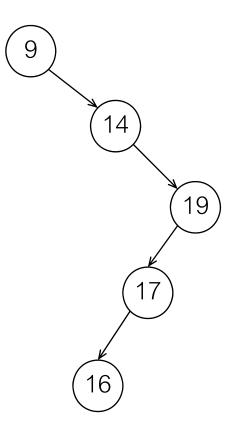
=> $\log_2 (n + 1) \le h$
=> $h \ge \log_2 (n + 1)$

- So, time will be proportional to lg n
 - Or will it?

Search speed in BST

- Time will be proportional to lg n, only if the tree is balanced!
- Example (imbalanced tree):
 - Time takes proportional to n in this case

 In later courses, you will learn about balanced trees (AVL trees, red-black trees, etc.)



Other trees and getting to a leaf faster..

- If you have enormous amounts of data, binary trees won't cut it (getting to a leaf is still expensive)
- Databases are such examples (large volumes of data, must fit in memory)
 - Increase the arity/branching factor!
 - Make heavy use of B-trees...
 - You will see this in later courses (CSC343, CSC443)

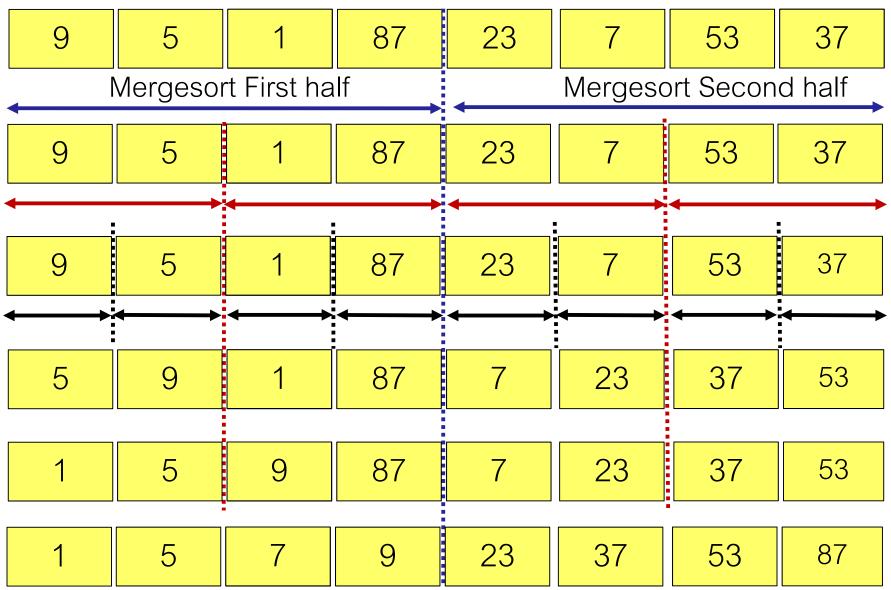
sorting

- How does the time to sort a list with n elements vary with n?
- It depends:
 - bubble sort -> n²
 - selection sort -> n²
 - insertion sort -> n²
 - some other sort?
 - quick sort?
 - radix sort?
 - merge sort?

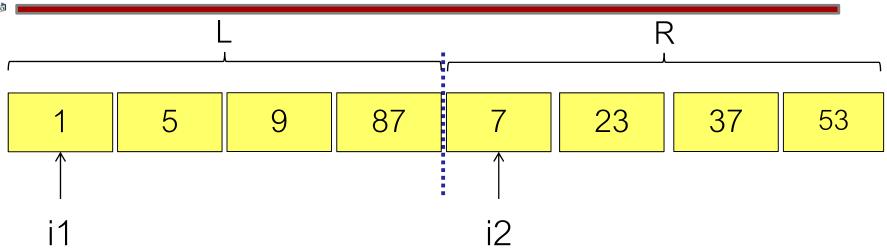
Mergesort

- Sorting algorithm
 - Split a list in two halves repeatedly
 - Halves with 0 or 1 elements are guaranteed sorted
 - Merge the two halves "on the way back"

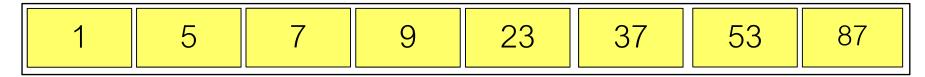
Mergesort: split all the way, then merge



Merge step: merge(L, R)



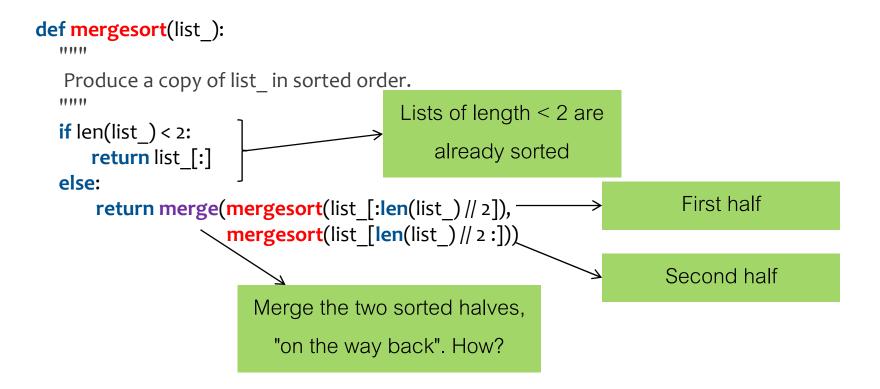
sorted list (different than L or R)



The halves might not be perfectly equal though...

mergesort

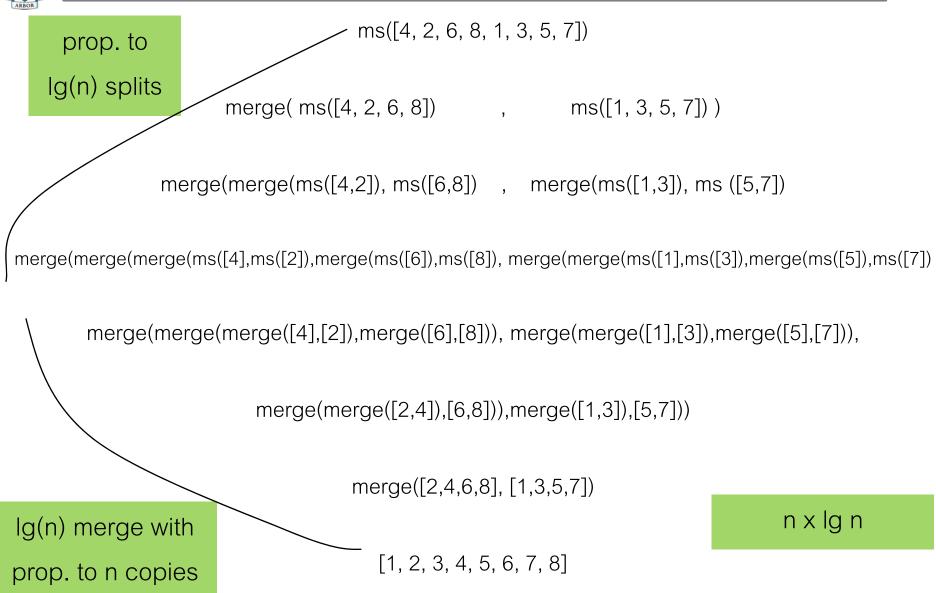
idea: break a list up (partition) into two halves, mergesort each half,
 then recombine (merge) the halves



Counting mergesort

- Assume a list of size n
- Merge operation takes linear time ... why?
- The "divide" step also takes linear time (approx n steps) ... why?
- What about the cost of the two recursive calls?

Counting mergesort: n = 8

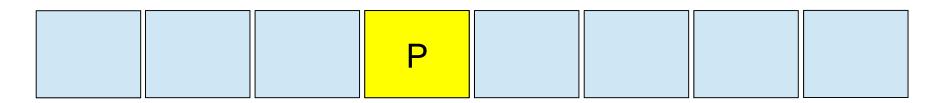


Quicksort

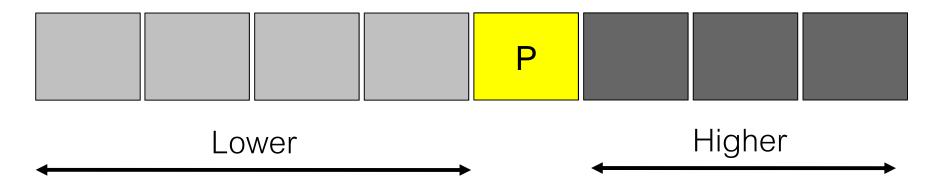
- Efficient sorting algorithm
- Works by:
 - Splitting a list (partitioning it) into the part smaller than some value (called pivot) and the part not smaller than that value
 - Sort these two parts
 - Recombine the list

Partition step

Begin with the unsorted list and select a pivot P at random

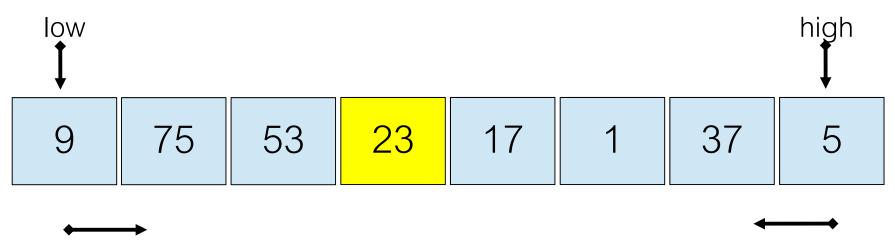


 Split list such that all elements to the left are lower than P and all to the right are higher



Several ways to do the partition step ...

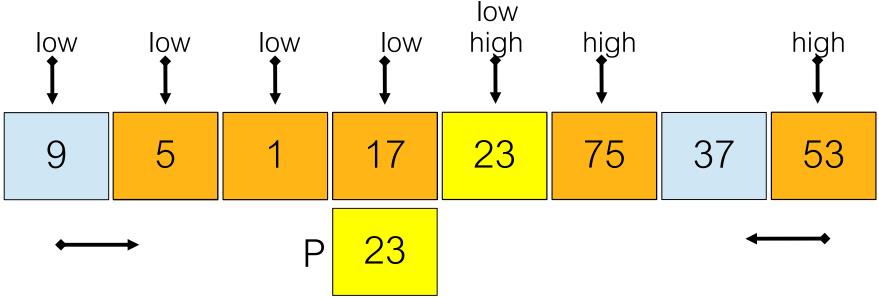
Partition step (more complex way..)



- 1. Take out pivot P and leave a hole in the list.
- 2. Increment low until we find: Ist[low] >= P
 Move this element in the hole => new hole in list
- 3. Decrement high until we find: lst[high] <= P

 Move this element in the hole => new hole in list
- 4. Repeat steps 2 and 3, until low == high
- 5. Move P into the remaining hole.

Partition step (more complex way..)

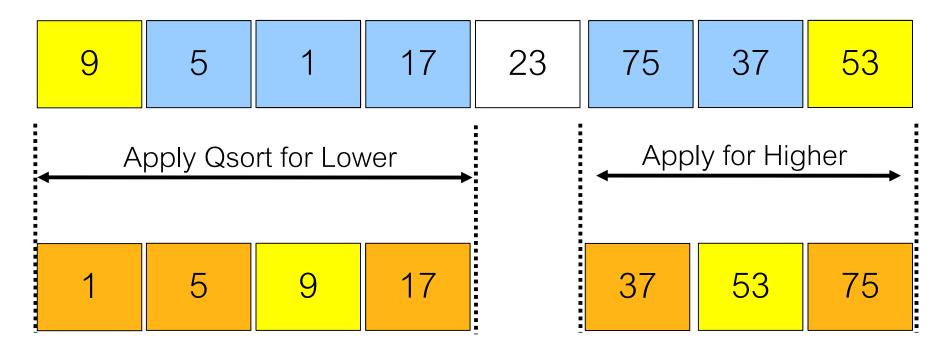


- 1. Take out pivot P and leave a hole in the list.
- 2. Increment low until we find: Ist[low] >= P
 Move this element in the hole => new hole in list
- 3. Decrement high until we find: lst[high] <= P

 Move this element in the hole => new hole in list
- 4. Repeat steps 2 and 3, until low == high
- 5. Move P into the remaining hole.

Quicksort Recursion

- Recurse: repeat the same idea for the two partitions
- Pick pivot, process such that all lower than it are on the left, all higher on the right

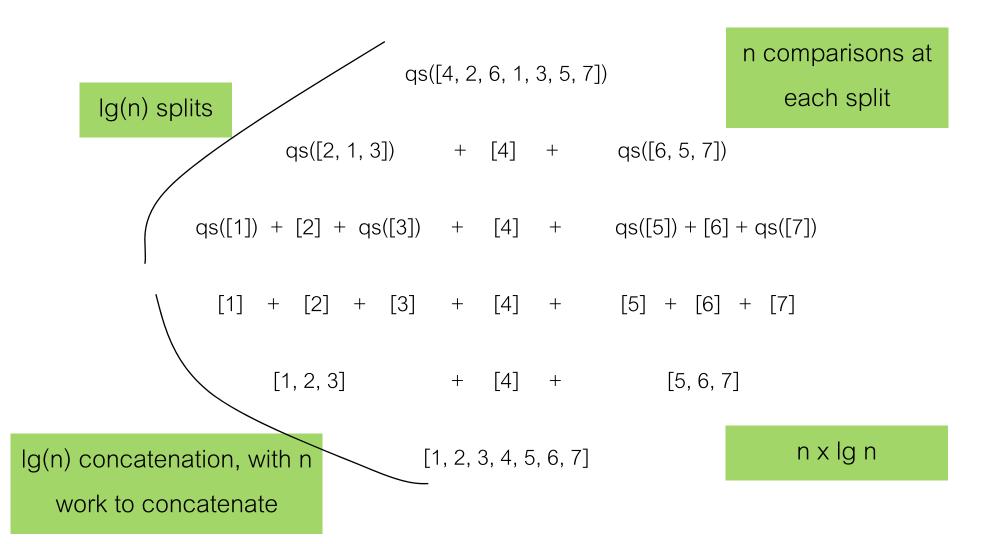


Quicksort

 idea: break a list up (partition) into the part smaller than some value (pivot) and not smaller than that value, sort these parts, then recombine the list:

```
def qs(list ):
       Return a new list consisting of the elements of list in ascending order.
       @param list list: a list of comparables
       @rtype: list
       111111
                                             Lists of length < 2 are
       if len(list ) < 2:</pre>
                                                 already sorted
           return list_[:]
                                                                                Simpler partition step
       else:
           smaller = [i for i in list_[1:] if i < list_[0]]
           larger = [i for i in list [1:] if i >= list [0]]
                                                                    Sort smaller elements
           return (qs(smaller) \mp
                   [list [o]] +
                   qs(larger))
                                                                     in its correct position
Sort larger elements
```


Counting quicksort: n = 7



Quicksort analysis – digging deeper

- Do we always have n log n though?
 - Mergesort: we know we always split in halves, no matter what
 - Quicksort: no guarantees, depends on how we pick the pivot
 - What's the worst case?

reverse_list ...