CSC148 winter 2016

binary trees week 8

Danny Heap heap@cs.toronto.edu BA4270 (behind elevators)

http://www.cdf.toronto.edu/~csc148h/winter/ 416-978-5899

March 11, 2016

Outline

binary trees

set data structure

traversals

binary search trees

BinaryTree

Change our generic Tree design so that we have two named children, left and right, and can represent an empty tree with None

class BinaryTree:

.....

.....

def __init__(self, data, left=None, right=None):

Create BinaryTree self with data and children left and right.

@param BinaryTree self: this binary tree Oparam object data: data of this node @param BinaryTree|None left: left child @param BinaryTree|None right: right child

@rtype: None

....

self.data, self.left, self.right = data, left, right

special methods...

We'll want the standard special methods:

__eq__

__str__

__repr__

contains

def contains(node, value):

you've implemented contains on linked lists, nested Python lists, general Trees before; implement this function, then modify it to become a method

```
.. .. ..
Return whether tree rooted at node contains value.
@param BinaryTree|None node: binary tree to search for value
Oparam object value: value to search for
@rtype: bool
>>> contains(None, 5)
False
>>> contains(BinaryTree(5, BinaryTree(7), BinaryTree(9)), 7)
       other was > False

other was > node. value = = value

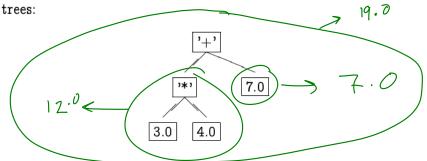
or contains (node. left, value)

or contains (node. right, value)

or contains (node. right, value)
True
```

arithmetic expression trees

Binary arithmetic expressions can be represented as binary



evaluating a binary expression tree

- ▶ there are no empty expressions
- ▶ if it's a leaf, just return the value
- otherwise...
 - evaluate the left tree
 - evaluate the right tree
 - combine left and right with the binary operator

 Strings

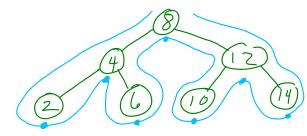
 we eval

Python built-in eval might be handy.

A2 uses set

some uses:

inorder



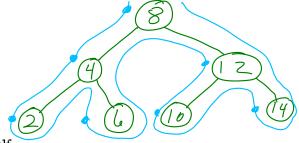
A recursive definition:

- ▶ visit the left subtree inorder
- visit this node itself
- visit the right subtree inorder

VISIT between Children

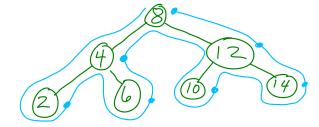
The code is almost identical to the definition.

preorder



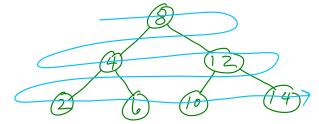
- visit this node itself
- visit the left subtree in preorder
- visit the right subtree in preorder

postorder



- visit the left subtree in postorder
- visit the rightsubtree in postorder
- visit this node itself

level order

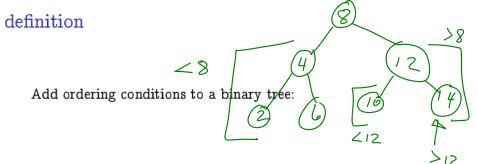


- visit this node
- ▶ visit this node's children
- visit this node's grandchildren
- visit this node's greatgrandchildren
- **...**

tracing redux

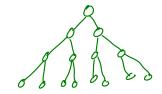
some students report being a bit bewildered by the execution of def visit_level(t, n, act), which means tracing is needed...

- trace visit_level(None, 7, act) (for any function act you devise)
- trace visit_level(t, 0, act) (for some BinaryTree with a few levels)
- trace visit_level(t, 1, act) (for some BinaryTree with a few levels)
- trace visit_level(t, 2, act) (for some BinaryTree with a few levels)
- trace visit_level(t, 3, act) (for some BinaryTree with a few levels)
- •



- ▶ data are comparable
- data in left subtree are less than node.data
- data in right subtree are more than node.data

why binary search trees?



Searchs that are directed along a single path are efficient:

- a BST with 1 one has height 1
- a BST with 3 nodes may have height 2
- a BST with 7 nodes may have height 3
- ▶ a BST with 15 nodes may have height 4

▶ a BST with n nodes may have height $\lceil \lg n \rceil$. $\lceil \sqrt{000}, 000 \rceil$ nodes, height ≤ 20

bst_contains

See cole

If node is the root of a "balanced" BST, then we can check whether an element is present in about $\lg n$ node accesses.

```
def bst_contains(node, value):
    .. .. ..
    Return whether tree rooted at node contains value.
    Assume node is the root of a Binary Search Tree
    @param BinaryTree|None node: node of a Binary Search Tree
    Oparam object value: value to search for
    @rtype: bool
    >>> bst_contains(None, 5)
    False
    >>> bst_contains(BinaryTree(7, BinaryTree(5), BinaryTree(9)), 5)
    True
    .. .. ..
    # use BST property to avoid unnecessary searching
```

4 - > 4 - = >

mutation: insert

```
def insert(node, data):
    Insert data in BST rooted at node if necessary, and return new root
    Assume node is the root of a Binary Search Tree.
    @param BinaryTree|None node: root of a binary search tree.
    Oparam object data: data to insert into BST, if necessary.
    >>> b = BinaryTree(8)
    >>> b = insert(b, 4)
    >>> b = insert(b, 2)
    >>> b = insert(b, 6)
    >>> b = insert(b, 12)
    >>> b = insert(b, 14)
    >>> b = insert(b, 10)
    >>> print(b)
            14
        12
            10
```