CSC148 winter 2016

efficiency

week 11

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/148/W16/
416-978-5899

March 30, 2016
Outline

big-Oh on paper

big-Oh examples

hash tables
quick sort

idea: break a list up (partition) into the part smaller than some value (pivot) and not smaller than that value, sort those parts, then recombine the list:

def qs(list_):

 Return a new list consisting of the elements of list_ in ascending order.

 @param list list_: list of comparables
 @rtype: list

 >>> qs([1, 5, 3, 2])
 [1, 2, 3, 5]

 if len(list_) < 2:
 return list_[::]
 else:
 return (qs([i for i in list_ if i < list_[0]]) + [list_[0]] +
 qs([i for i in list_[1:] if i >= list_[0]]))
counting quick sort: \(n = 7 \)

\[qs([4, 2, 6, 1, 3, 5, 7]) \]

\[qs([2, 1, 3]) + [4] + qs([6, 5, 7]) \]

\[[1, 2, 3] + [4] + [5, 6, 7] \]

\[[1, 2, 3, 4, 5, 6, 7] \]
merge sort

idea: break the list into halves, merge sort the halves, then merge the sorted halves.

```python
def ms(L):
    
    """
    Produce copy of L in non-decreasing order
    """
    if len(L) < 2:
        return L[:]
    else:
        return merge(ms(L[:len(L) // 2]),
                     ms(L[len(L) // 2 :]))
```
counting merge sort, \(n = 8 \)

\[ms([4, 2, 6, 8, 1, 3, 5, 7]) \]

\[mg(ms([4, 2, 6, 8]), ms([1, 3, 5, 7])) \]

\[mg(mg(ms([4, 2]), ms([6, 8])), mg(ms([1, 3]), ms([5, 7]))) \]

\[mg(mg(mg(ms[4], ms[2]), mg(ms([6]), ms([8]))), mg(mg(ms([1]), ms([3])), mg(ms([5]), ms([7]))) \)

\[mg(mg(mg([4], [2]), mg([6], [8])), mg(mg([1], [3]), mg([5], [7]))) \]

\[mg(mg([2, 4], [6, 8]), mg([1, 3], [5, 7])) \]

\[mg([2, 4, 6, 8], [1, 3, 5, 7]) \]

\[[1, 2, 3, 4, 5, 6, 7, 8] \]
$O(n)$

The stakes are very high when two algorithms solve the same problem but scale so differently with the size of the problem (we’ll call that n). We want to express this scaling in a way that:

- is simple
- ignores the differences between different hardware, other processes on computer
- ignores special behaviour for small n
big-O definition

Suppose the number of “steps” (operations that don’t depend on \(n \), the input size) can be expressed as \(t(n) \). We say that \(t \in O(g) \) if:

\[
\text{there are positive constants } c \text{ and } B \text{ so that for every natural number } n \text{ no smaller than } B, \\
t(n) \leq cg(n)
\]

use graphing software on:

\[
t(n) = 7n^2 \\
t(n) = n^2 + 396 \\
t(n) = 3960n + 4000
\]

to see that the constant \(c \), and the slower-growing terms don’t change the scaling behaviour as \(n \) gets large
if $t \in \mathcal{O}(n)$, then it’s also the case that $t \in \mathcal{O}(n^2)$, and all larger bounds

\[\mathcal{O}(1) \subseteq \mathcal{O}(\lg(n)) \subseteq \mathcal{O}(n) \subseteq \mathcal{O}(n^2) \subseteq \mathcal{O}(n^3) \subseteq \mathcal{O}(2^n) \subseteq \mathcal{O}(n^n) \ldots \]
def silly(n):
 n = 17 * n**(1/2)
 n = n + 3
 print("n is: {}.").format(n))

 if n > 97:
 print(’big!’)
 else:
 print(’not so big!’)

How does the running time of silly depend on n?
loops

How does the running time of this code fragment depend on \(n \)?

```python
sum = 0
for i in range(n):
    sum += i
```

How does the running time of this code fragment depend on \(n \)?

```python
sum = 0
for i in range(n//2):
    for j in range(n**2):
        sum += i * j
```
How does the running of this code fragment depend on n?

```python
i, j, sum = 0, 0, 0
while i**2 < n:
    while j**2 < n:
        sum += i * j
        j += 1
    i += 1
```

How does the running time of this code fragment depend on n?

```python
i, sum = 0, 0, 0
while i < n * n:
    sum += i
    i += 1
```
How does the running time of this code fragment depend on n?

```python
sum = 0
if n % 2 == 0:
    for i in range(n*n):
        sum += 1
else:
    for i in range(5, n+3):
        sum += i
```
halving

How does the running time of \texttt{twoness} depend on \texttt{n}?

\begin{verbatim}
def twoness(n):
 count = 0
 while n > 1:
 n = n // 2
 count = count + 1
 return count
\end{verbatim}
working with \(\lg \)

\(\lg(n) \): this is the number of times you can divide \(n \) in half before reaching 1.

- refresher: \(a^b = c \) means \(\log_a c = b \).

- this runtime behaviour often occurs when we “divide and conquer” a problem (e.g. binary search)

- we usually assume \(\lg n \) (log base 2), but the difference is only a constant:

\[
2^{\log_2 n} = n = 10^{\log_{10} n} \implies \log_2 n = \log_2 10 \times \log_{10} n
\]

- so we just say \(\mathcal{O}(\lg n) \).
How does the running time of this code fragment depend on n?

```python
for k in range(5000):
    if L[k] % 2 == 0:
        even += 1
    else:
        odd += 1
```
How does the running time of this code fragment depend on n and m?

```python
sum = 0
for i in range(n):
    for j in range(m):
        sum += (i + j)
```
summary

sequences:

loops:

conditions:
why hash

lists are contiguous (adjacent) sequences of references to objects, so access to a list position is fast (just arithmetic)

what if we could convert — hash — other data to a suitable integer for a list index, we’d want:

- fast
- deterministic: the same (or equivalent values) gets hashed to the same integer each time.
- well-distributed: We’d like a typical set of values to get hashed pretty uniformly over the available list positions.
you can’t hash everything!

```python
>>> list1 = [0]
>>> id(list1)
3069263116
>>> list2 = [0, 1]
>>> id(list2)
3069528300
>>> list1.append(1)
>>> id(list1)
3069263116

oops!
```
Once you have hashed an object to a number, you can easily use part of that number as an index into a list to store the object, or something related to that object. If the list is of length n, you might store information about object o at index $\text{hash}(o) \% n$.
even a well-distributed hash function will have a surprising number of collisions...

how many people do you need to poll before you find two with the same birthday (out of 366 possibilities, including leap-year)?

the mathematics is a bit counter-intuitive... the probability of a non-collision for 23 birthdays is:

\[
p = \frac{366}{366} \times \frac{365}{366} \times \cdots \times \frac{344}{366} \approx 0.493
\]
chaining or probing

A couple of tactics for dealing with two different keys ending up at the same index:

chaining: keep a small (one hopes) list at that index

probing: explore, in a systematic way, until the next open index

Either tactic has costs, so keep collisions to a minimum by keeping the list partly empty
Python dictionaries are implemented using hash tables and probing. The cost of collisions is kept small by enlarging the underlying table when necessary, and the cost of enlarging is amortized over many dictionary accesses.

The result is that access to a dictionary element is $O(1)$, essentially the time it takes to access a list element.

One downside is that extra work is required to order the keys or values of a dictionary. What is their “natural” order?