CSC148 Intro. to Computer Science

Lecture 12: Efficiency of Recursive Algorithms, big O, Hash Table, Final Exam.

Amir H. Chinaei, Winter 2016

Office Hours: W 16:00-17:45 BA4222

ahchinaei@cs.toronto.edu
http://www.cs.toronto.edu/~ahchinaei/

Course webpage:

http://www.cdf.toronto.edu/~csc148h/winter

Review

- Efficiency of iterative algorithms
 - In CSC148, we mainly focus on time efficiency
 - · i.e. time complexity
 - We calculate/estimate a function denoting the number of operations (e.g. comparisons), and we focus on the dominant term:
 - discard all irrelevant coefficients as well as all nondominant terms
 - We focus on the loops
 - The way the *loop invariant* is changed
 - If the loops are nested or sequential
 - We also watch the function calls

Efficiency of recursive algorithms?

Example I: BST Contains

A divide and conquer problem:

```
def bst_contains(node, value):
    if node is None:
        return False
    elif value < node.data:
        return bst_contains(node.left, value)
    elif value > node.data:
        return bst_contains(node.right, value)
    else:
        return True
```

- \diamond Denote T(n) as the number of operations for a tree with n nodes
- * Assume we always have the best tree:
 - ❖ i.e the tree is (almost) balanced
- \star T(n)=T(n/2) + ε
- We will see the big O notation of this, shortly.

Example 2: Quick Sort

Another divide and conquer problem:

```
Qsort (A, i, j)
if (i < j)
   p := partition(A)
   Qsort (A, i, p-1)
   Qsort (A, p+1, j)
end</pre>
```

- Denote T(n) as the number of operations in Qsort for a list with n items
- ❖ Partition requires to traverse the whole list, i.e. *n* iterations
- ❖ Assume we have the best partition function: i.e. p is roughly at the middle of the list
- \star T(n)=n+ 2T(n/2) + ε
- We will see the big O notation of this, shortly.

Example 3: Merge Sort

Another, divide and conquer problem:

```
Msort (A, i, j)
if (i < j)
S1 := Msort(A, i , (i+j)/2)
S2 := Msort(A, (i+j)/2, j)
Merge(S1,S2, i, j)</pre>
```

end

- Denote T(n) as the number of operations in Msort for a list with n items
- Merge is to merge two sorted lists in one: the result will have n items. hence, Merge requires n operations
- The list will be always halved
- \star T(n)=2T(n/2) + n + ϵ
- We will see the big O notation of this, shortly.

big O of recurrence relations

- ❖ It's covered in CSC236
 - ❖ For instance, via the Master Theorem
 - If interested, read the following:
 - Let T be an increasing function that satisfies the recurrence relation $T(n) = a T(n/b) + cn^{d}$

whenever $n = b^k$, where k is a positive integer greater than I, and c and d are real numbers with c positive and d nonnegative. Then

$$T(n) \text{ is } \begin{cases} O(n^d) & \text{if } a < b^d, \\ O(n^d \log n) & \text{if } a = b^d, \\ O(n^{\log_b a}) & \text{if } a > b^d. \end{cases}$$

big O of recurrence relations

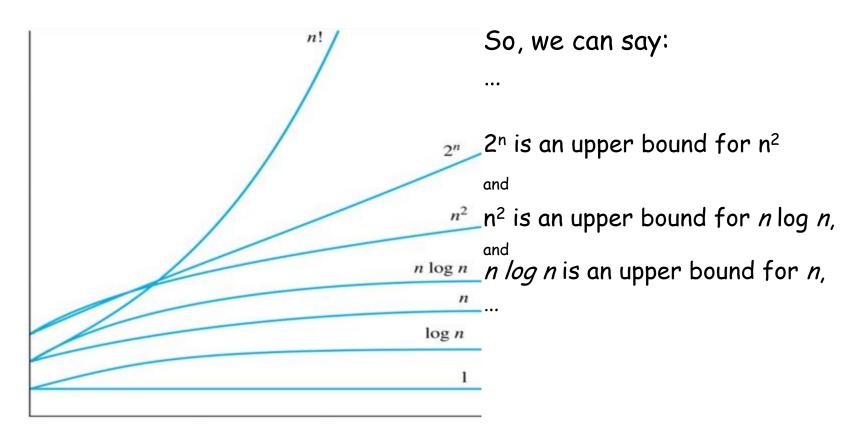
For now, we are going to accept the following common ones:

Recurrence Relation	Time Complexity	Example Algorithms
T(n)=T(n/2) + O(1)	$T(n) \in O(\log n)$	bst_contains, Binary Search
T(n) = T(n-1) + O(1)	$T(n) \in O(n)$	Factorial
T(n) = 2T(n/2) + O(n)	$T(n) \in O(n \log n)$	Qsort, Msort
T(n) = T(n - 1) + T(n - 2) + O(1)	$T(n) \in 2^n$	Recursive Fibunacci

More insight to big O

- * When we say an algorithm (or a function) f(n) is in O(g(n)), we mean f(n) is bounded (from up) by g(n). In other words, g(n) is an upper bound for f(n)
- * This means, there are positive constants c and n_0 such that $f(n) \le c g(n)$ for all $n > n_0$
- * Intuitively, this means that f(n) grows slower than some fixed multiple of g(n) as n grows without bound.

Recall



Find c and n_0 for each of these cases

big O

If a function $\in O(n)$, it's also $\in O(n \log n)$ and $\in O(n^2)$

In general,

$$O(1) \subseteq ... \subseteq O(\log \log n) \subseteq O(\log n) \subseteq O(n \log n) ... \subseteq O(n^2) \subseteq ... \subseteq O$$

$$\subseteq O(n^2 \log n) \dots \subseteq O(n^3) \subseteq \dots \subseteq O(n^4) \dots \subseteq O(2^n) \dots \subseteq O(3^n) \dots \subseteq O(n!)$$

However, when are looking for an upper bound, we are required to find the tightest one

$$F(n) = 5 n^2 + 1000$$
 is in $O(n^2)$

Recall: Python lists and our liked lists

- Python list is a contiguous data structure
 - * *Lookup* is fast
 - **!** *Insertion* and *deletion* is slow
- linked list is not a contiguous data structure
 - ***** *Lookup* is slow
 - ❖ *Insertion* and *deletion* (when does not require lookup) is fast

	lookup	insert	delete
Lists	O(1)	O (n)	O(n)
Linked Lists	O(n)	O(1)	O(1)

Recall: Balanced BST

* BST can be implemented by linked lists

❖ Yet, it has a property that makes it more efficient when it

comes to lookup

·	lookup	insert	delete
Lists	O(1)	O(n)	O(n)
Linked Lists	O(n)	O(1)	<i>O</i> (1)
BST	O(log n)	O(log n)	O(log n)

- Yet, this comes at a price for insertion and deletion
- * Can we do better?

Can we do better?

- * Assume a magical machine:
 - **❖** Input: a **key**
 - ❖ Output: its **index** value in a list
- Well, this is a mapping machine:
 - ❖ A pair of (key, index)
 - The **key** is the value that we want to lookup or insert or delete, and the **index** is its location in the list
- * And, it's called a hash function

Hash Function

- A hash function first converts a key to an integer value,
- * Then, compresses that value into an index.
- Just as a simple example:
- The conversion can be done by applying some functions to the binary values of the characters of the key
- And the compression can be done by some modular operations.

Example: (insertion)

- ❖ A class roster of up to 10 students:
 - ❖ We want to enroll "ANA"
 - **\Delta** Hash function:
 - **♦** *Conversion* component, for instance, returns 208 which is 65+78+65
 - ❖ Compression component, for instance, returns 8 which is 208 mod 10
 - So, we insert "ANA" at index 8 of the roster.
 - Similarly, if we want to enroll "ADAM",
 - we insert it at index 5 of the roster (let's call it hash table).

Example: (lookup)

- ❖ We want to lookup "ANA"
- **\Delta** Hash function:
 - **❖** *Conversion* component, for instance, returns 208 which is 65+78+65
 - Compression component, for instance, returns 8 which is 208 mod 10
- So, we check index 8 of the roster.
- Similarly, if we want to lookup "ADAM",
 - we check index 5 of the roster (hash table).

Recall: Balanced BST

	lookup	insert	delete
Lists	O(1)	O(n)	O(n)
Linked Lists	O(n)	O(1)	O(1)
BST	O(log n)	O(log n)	O(log n)
Hash Table	O(1)*	O(1) *	O(1) *

^{*} if there is no collision

Collision

- * How collision can happen?
- **\Delta** What can we do when there is a collision?
 - Chaining

Probing

Double hashing