CSC148 Intro. to Computer Science

Lecture II: Efficiency of Algorithms, Big O

Amir H. Chinaei, Winter 2016

Office Hours: W 16:00-17:45 BA4222

ahchinaei@cs.toronto.edu http://www.cs.toronto.edu/~ahchinaei/

Course webpage:

http://www.cdf.toronto.edu/~csc148h/winter

Binary Trees 4-1

Why efficiency of algorithm matters?

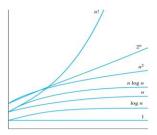
* An example of growth of functions:

	n	$\log n$	n	$n \log n$	n^2	2"	n!
-	10	$3 \times 10^{-11} \text{ s}$	10^{-10} s	$3 \times 10^{-10} \text{ s}$	10^{-9} s	10^{-8} s	$3 \times 10^{-7} \text{ s}$
	10^{2}	$7 \times 10^{-11} \text{ s}$		$7 \times 10^{-9} \text{ s}$		$4 \times 10^{11} \text{ yr}$	
	10^{3}	1.0×10^{-10} s		$1 \times 10^{-7} \text{ s}$	10^{-5} s		*
	10^{4}	1.3×10^{-10} s	10^{-7} s	$1 \times 10^{-6} \text{ s}$	10^{-3} s	*	*
	105	$1.7 \times 10^{-10} \text{ s}$	10^{-6} s	$2 \times 10^{-5} \text{ s}$	0.1 s		
	10^{6}	$2 \times 10^{-10} \text{ s}$	10^{-5} s	$2 \times 10^{-4} \text{ s}$	0.17 min	*	*

Efficiency 4-2

Why efficiency of algorithm matters?

* Another example of growth of functions:



Efficiency 4-3

Comparison of growth of functions

- When n is arbitrarily big, growth of functions highly depends on the dominant term in the function:
 - <u>n</u>+5
 - n+1000000
 - n^2+n+5
 - $n^2+1000000n+5$
 - $2n^2 + \underline{n}^3$
 - \bullet n + log n + n log n
 - \bullet n + (log n)⁵ + n log n
 - <u>2</u>n + n²
 - $\frac{2^n}{n} + n^{200}$

Efficiency 4-4

Comparison of growth of functions

- Ignore coefficients as well:
 - 20n+5
 - 200<u>n</u>+1000000
 - 600<u>n</u>²+n+5
 - $-200\underline{n}^2+1000000n+5$
 - $2n^2 + 50n^3$
 - n + 5000 log n + 300 <u>n log n</u>
 - $n + (\log n)^5 + 300 \underline{n \log n}$
 - $-2^n + 1000 n^2$
 - $-10002^{n} + 2000 n^{200}$

Efficiency 4-5

Comparison of growth of functions

- Notation:
 - 20<u>n</u>+5 **O(n)**
 - 200<u>n</u>+1000000 O(n)
 - 600<u>n</u>²+n+5 **O**(n²)
 - 200<u>n²</u>+1000000n+5 <mark>O(n²)</mark>
 - $2n^2 + 50n^3$ O(n³)
 - n + 5000 log n + 300 $\underline{n \log n}$ O(n log n)
 - n + $(\log n)^5$ + 300 $n \log n$ O(n $\log n$)
 - $-2^n + 1000 n^2 O(2^n)$
 - $10002^n + 2000 n^{200} O(2^n)$

Ordering functions by big_O

· Ordering:

Efficiency 4-7

Ordering functions by their growth

Ordering:

• $f_{10}(n) = n!$

Efficiency 4-8

Time complexity of algorithms

- How time efficient is an algorithm given input size of n.
- * The worst-case time complexity:
 - an upper bound on the number of operations an algorithm conducts to solve a problem with input size of n.
- We measure time complexity in the order of number of operations an algorithm uses in its worst-case and will demonstrate it using big_O.
 - ignore implementation details

٠

Efficiency 4-9

Time complexity: Example 1

```
def max(list):
    max = list[0]
    for i in range(len(list)):
        if max < list[i]: max = list[i]
    return max</pre>
```

Exact counting:

Count the number of comparisons:

- Assume len(list) = n
- The max < list[i] comparison is made n times.
- Each time i is incremented, a test is made to see if i < len(list).
- One last comparison determines that i ≥ len(list).
- Exactly 2n + 1 comparisons are made.
- · Consider the dominant term (as well as ignoring the coefficient)
- Hence, the time complexity of the max algorithm is O(n).

Efficiency 4-10

Time complexity: Example 2

```
def max2(list):
    max = list[0]
    i=1
    while i< len(list):
        if max < list[i]: max = list[i]
        i+=1
    return max</pre>
```

Exact counting:

Count the number of comparisons:

- The max < list[i] comparison is made n-1 times.
- Each time i is incremented, a test is made to see if i < len(list).
- One last comparison determines that $i \ge len(list)$.
- Exactly 2(n-1) + 1 = 2n 1 comparisons are made.
- · Consider the dominant term (as well as ignoring the coefficient)
- Hence, the time complexity of the max2 algorithm is O(n).

Efficiency 4-11

Time complexity: Example 3

```
def silly(n):
    n = 17 * n**(1/2)
    n = n + 3
    print("n is: {}.".format(n))
    if n > 1997:
        print('very big!')
    elif n > 97:
        print('big!')
    else:
        print('not so big!')
```

Exact counting of the number of comparisons:

- Assume there is not any comparisons inside functions print or format
- Exactly 2 comparisons are made.
- Hence, the time complexity of the silly algorithm is O(1).
- The number of comparisons in print/format is NOT depending on n

Estimating big_O

- Instead of calculating the exact number of operations, and then use the dominant term,
- Let's just focus on the dominant parts of the algorithm in the first place.
- Dominant parts of algorithms are loops and function calls.
- Hence, two things to watch:
 - 1. We need to **carefully** estimate the number of iterations in the loops in terms of algorithm's input size, i.e. *n*.
 - 2. If a called function depends on *n* (i.e. it has loops that are in terms of *n*), we should take them into consideration.

Efficiency 4-13

Time complexity: Example 1 (revisited)

```
1. def max(list):
2.    max = list[0]
3.    for i in range(len(list)):
4.        if max < list[i]: max = list[i]
5.    return max</pre>
```

Calculating big_O:

Focus on the dominant part of the code

(normally loops, also be careful about function calls)

- Assume len(list) = n
- The dominant part is the for loop starting at line 3
 - · Line 2 is minor, so is line 1, line 4, and line 5
 - · None of these lines have a loop or a function call
- The **for** loop in line 3 iterates roughly *n* times
- Hence, the time complexity of the max algorithm is O(n).

Efficiency 4-14

Time complexity: Example 2 (revisited)

Calculating big_O:

Focus on the dominant part of the code

- Assume len(list) = n
- The dominant part is the while loop starting at line 4
- This while loop iterates roughly n times
- Hence, the time complexity of the max2 algorithm is O(n).

Efficiency 4-15

Time complexity: Example 3 (revisited)

```
def silly(n):
    n = 17 * n**(1/2)
    n = n + 3
    print("n is: {}.".format(n))
    if n > 1997:
        print('very big!')
    elif n > 97:
        print('big!')
    else:
        print('not so big!')
```

Calculating big_O:

Focus on the dominant parts (loops and function calls) of the code

- There is no loop; but there are some function calls
- The number of operations in print/format is NOT depending on \boldsymbol{n}
- In other words, these function calls require constant amount of time
- Hence, the overall time complexity of the silly algorithm is O(1).

Efficiency 4-16

Time complexity: Example 4

```
def silly2(n):
    n = 17 * n**2
    n = n + 3
    print("n is: {}.".format(n))
    if n > 1997:
        for i in range(n): print('so big!')
    elif n > 97:
        print('big!')
    else:
        print('not so big!')
Calculate big_O:
```

Efficiency 4-17

Time complexity: Example 5

```
def silly2(n):
    n = 17 * n**2
    n = n + 3
    print("n is: {}.".format(n))
    if n > 1997:
        print('so big!')
    elif n > 97:
        for i in range(n): print('big!')
    else:
        print('not so big!')
```

Time complexity: Examples 6, 7

What is the time complexity for this code fragment?

```
for i in range(n//2):
    sum += i * j
```

The loop (roughly) iterates $\frac{1}{2}$ n times:. Hence, it is O(n)

* What is the time complexity for this code fragment?

```
sum = 0
for i in range(n//2):
    for j in range(n**2):
        sum += i * j
```

The outer loop iterates $\frac{1}{2}$ n * n² times:. Hence, it is $O(n^3)$

Efficiency 4-19

Time complexity: Examples 8

What is the time complexity for this code fragment?

```
sum = 0
for i in range(n//2):
    sum +=i
i = 1
for j in range(n**2):
    sum += i * j
```

The loops iterate $\frac{1}{2}$ n + n² times:. Hence, it is $O(n^2)$

Efficiency 4-20

Time complexity: Examples 9, 10

* What is the time complexity for this code fragment?

```
sum = 0
if n % 2 == 0:
    for i in range(n*n):
        sum += 1
else:
    for i in range(5, n+3):
        sum += i
```

The loops iterate either n^2 or n+3-5 times. Hence, it is $O(n^2)$

What is the time complexity for this code fragment?

```
i, sum = 0, 0, 0
while i < n * n:
sum += i
i += 1
```

The loop iterate n^2 times:. Hence, it is $O(n^2)$

Efficiency 4-21

Time complexity: Examples 11

What is the time complexity for this code fragment?

```
i, j, sum = 0, 0, 0
while i**2 < n:
while j**2 < n:
sum += i * j
j += 1
```

The outer loop iterates $n^{1\!/2}*n^{1\!/2}$ times:. Hence, it is $\boldsymbol{O(n)}$

Efficiency 4-22

Time complexity: Examples 12

What is the time complexity for this code fragment?

```
def twoness(n):
    count = 0
    while n > 1:
        n = n // 2
        count = count + 1
return count
```

The loop iterate log n times:. Hence, it is O(log n)