CSC 148H1 TERM TEST #2 — SOLUTIONS March 2014

Question 1. [5 MaRKs]

Read over the declaration of class BTNode as well as the header and docstring for function has_branch. Then
complete the implementation of has_branch.

class BTNode:
"""A node in a binary tree."""

def __init__(self: ’BTNode’, item: object,
left: ’BTNode’ =None, right: ’BTNode’ =None) -> None:
"""Tnitialize this node.

nnn

self.item, self.left, self.right = item, left, right

def has_branch(T: BTNode, iteml: object, item2: object) -> bool:
"""Return True if tree rooted at T has some node with node.item == iteml
that has a child with child.item == item2. Return False otherwise.

>>> T = BTNode(1, BTNode(2, BTNode(3)), BTNode(4, BTNode(5), \

BTNode(6)))
>>> has_branch(T, 2, 3)
True
>>> has_branch(T, 4, 7)
False

if T is None:
return False
else:
return ((T.item == iteml and
((T.left and T.left.item == item2) or
(T.right and T.right.item == item2))) or
has_branch(T.left, iteml, item2) or
has_branch(T.right, iteml, item2))

Marking notes: 1 mark for None base case, 2 marks for checking whether T has a branch with appropriate
values, 2 marks for checking T'.left and T.right for branches.

A, Al: check children before recursion -0.5
B, B1: check existence of children (lines 5, 6) -1
D: check further than current parent/child if they don’t match -1

E: omitting 'or’ and ris returning False prematurely -0.5

Page 1 of 6 CONT'D...

CSC 148H1 TERM TEST #2 — SOLUTIONS March 2014

F: not returning -0.5

G: missing args in recursive calls -0.5

H: compares node with item -0.5

I: incorrect connectives -0.5, missing connectives -1

J: used self instead of T -0.5

Question 2. [5 mMARKs]

Read over the declarations of classes BTNode and LLNode, as well as the header and docstring for function
root_to_leaves. Then implement the function root_to_leaves.

class BTNode:
"""A node in a binary tree."""

def __init__(self: ’BTNode’, item: object,
left: ’BTNode’ =None, right: ’BTNode’ =None) -> None:
"""Tnitialize this node.

nnn

self.item, self.left, self.right = item, left, right

class LLNode:
"""A node in a linked list."""

def __init__(self: ’LLNode’, item: object, link: ’LLNode’ =None) -> None:
"""Tnitialize this node.

nnn

self.item, self.link = item, link

def __repr__(self: ’LLNode’) -> str:
"""Return a string that represents self in constructor (initializer) form.

>>> b = LLNode(1, LLNode(2, LLNode(3)))

>>> repr(b)

’LLNode (1, LLNode(2, LLNode(3)))’

return (’LLNode({}, {})’.format(repr(self.item), repr(self.link))
if self.link else ’LLNode({})’.format(repr(self.item)))

def __eq__(self: ’LLNode’, other: ’LLNode’) -> bool:
"""Return whether LLNode self is equivalent to LLNode other"""
return (isinstance(other, LLNode) and
self.item == other.item and self.link == other.link)

Page 2 of 6 CONT'D...

CSC 148H1 TERM TEST #2 — SOLUTIONS March 2014

def root_to_leaves(T: BTNode) -> list:

Return list of paths from T to each of its leaves, or []

if T is None. Each path is a linked list formed from LLNodes.
You should return a list containing a single-node linked list
when T has no children.

>>> T = BTNode(1, BTNode(2, None, BTNode(3)), BTNode(4, BTNode(5), BTNode(6)))

>>> L1 = root_to_leaves(T)

>>> L2 = [LLNode(1, LLNode(2, LLNode(3))), LLNode(1l, LLNode(4, LLNode(5))), \
LLNode(1, LLNode(4, LLNode(6)))]

>>> len(L1) == len(L2) and all([p in L2 for p in L1])

True

if T is Nonme:
return []
elif T.left is None and T.right is None:
return [(LLNode(T.item,None))]
else:
leftchpaths = root_to_leaves(T.left)
rightchpaths = root_to_leaves(T.right)
leftpaths = [LLNode(T.item, P) for P in leftchpaths]
rightpaths = [LLNode(T.item, P) for P in rightchpaths]
return leftpaths + rightpaths

Marking notes: 1 mark for None base case, 1 mark for leaf base case, 3 marks for computing lists of child
paths and combining them into list of paths from this node.

Question 3. [5 MARKs]

Read over the class declaration for BTNode and the docstring for function ordered_and bounded. Then
implement ordered_and_bounded.

class BTNode:
"""A node in a binary tree."""

def __init__(self: ’BTNode’, item: object,
left: ’BTNode’ =None, right: ’BTNode’ =None) -> None:
"""Tpnitialize this node.

nnn

self.item, self.left, self.right = item, left, right

def ordered_and_bounded(T: BTNode, lower: int, upper: int) -> list:

Page 3 of 6 CONT'D...

CSC 148H1 TERM TEST #2 — SOLUTIONS March 2014

"""Return a list of items, in ascending order, from nodes of T,
with all items no less than lower and no greater than upper.
Return [] if T is None. You are *not* allowed to sort any list,
and you should visit as few nodes as possible.

preconditions: -- node items in T are comparable,
-- T is a binary search tree in ascending order,
that is, all items in every left sub-tree are less
than the sub-tree’s root and all items in every right
sub-tree are more than the sub-tree’s root

>>> T = BTNode(4, BTNode(2, BTNode(1), BTNode(3)) , BTNode(6, \
BTNode(5), BTNode(7)))

>>> ordered_and_bounded(T, 2, 5)

[2, 3, 4, 5]

if T is Nonme:
return []
else:
return ((ordered_and_bounded(T.left, lower, upper)
if lower < T.item else []) +
([T.item] if lower <= T.item <= upper else []) +
(ordered_and_bounded(T.right, lower, upper)
if upper > T.item else []))

Marking notes: 1 mark for None base case. 1 mark for getting list from left subtree if lower = T.item. 1
mark for getting list from right subtree if upper ;= T.item. 2 marks for adding T.item to list if it is in
interval [lower, upper|. 1 mark off if extra nodes are visited, that is BST property not used. 1 mark off if
list is sorted.

Question 4. [6 maRKsS]

Read the functions hybrid_search and hybrid_search2. For each function, decide which of the following com-
plexity classes best describe that function’s worst-case performance on a list of n elements:

0(1) O(lgn) O(n) O(nlgn) O(n?)

For each function, explain why your choice of big-Oh complexity makes sense. Also explain what behaviour
you expect hybrid_search and hybrid_search2 should exhibit when run on a computer on a list of size 2n versus
a list of size n.

def hybrid_search(x:int,L:1list) -> bool:
"""precondition: L is sorted
>> L = [1,5,9, 9, 9, 12, 12, 15, 19,20,40,41,42,43,50,100,500]
>>> hybrid_search(21,L)

Page 4 of 6 CONT'D...

CSC 148H1 TERM TEST #2 — SOLUTIONS March 2014

False
>>> hybrid_search(100,L)
True
def helper(i,j) -> bool:
precondition: 0 <= i <= j < len(L)
if (j-i) < len(L)/10:
return any([y == x for y in L[i:j+1]1]1)
if x < L[(i+j)//2]:
return helper(i, (i+j)//2-1)
elif x > L[(i+j)//2]:
return helper((i+j)//2+1, j)
else:
return True
return helper(0,len(L)-1)

O(n). The call to the helper methods occur at most 4 times before 7 — 7 < len(L)/10, and then we must
search a slice of size between n/10 and n/20. Then each element in a slice with at least n/20 elements
must be inspected. I expect the running time to roughly double if I increase the size of the list from n to
2n.

Marking notes: 2 marks for choosing O(n) with a suitable explanation. 1 mark if their expectation of how
running time scales with doubling the list size is consistent with (whatever) choice of complexity class they
make.

def hybrid_search2(x:int,L:1ist) -> bool:
"""precondition: L is sorted
>>> L = [1,5,9, 9, 9, 12, 12, 15, 19,20,40,41,42,43,50,100,500]
>>> hybrid_search(21,L)
False
>>> hybrid_search(100,L)
True
def helper(i,j) -> bool:
precondition: 0 <= i <= j < len(L)
if (j-i) < 10:
return any([y == x for y in L[i:j+1]])
if x < LL(i+j)//2]:
return helper (i, (i+j)//2-1)
elif x > L[(i+j)//2]:
return helper((i+j)//2+1, j)
else:
return True
return helper(0,len(L)-1)

Page 5 of 6 CONT'D...

CSC 148H1 TERM TEST #2 — SOLUTIONS March 2014

O(lgn). The helper method is called approximately lgn — 3 times, and then a linear search of no more
than 10 items is performed, so the complexity is proportional to lgn. I expect that the running time would
increase by a constant as the size of the input list was doubled.

Marking notes: 2 marks for indicating O(lgn) and giving a suitable explanation. 1 mark for indicating that
run time would increase by a constant if the length of the input list were doubled.

Page 6 of 6 END OF SOLUTIONS

