
CSC148H1 Term test #1 | Solutions February 2014

Question 1. [5 marks]

Read over the de�nition of this Python function:

def d(n):

"""Docstring (almost) omitted."""

return 1 + max([d(i) for i in n] + [0]) if isinstance(n, list) else 0

Work out what each function call produces, and write it in the space provided.

1. d(5)

0

2. d([])

1

3. d([1, 3, 5])

1

4. d([0, [1, 3, 5], 7])

2

5. d([0, [1, 3, 5, [7, [9]]], 11])

4

Question 2. [5 marks]

Read over the declarations of the three Exception classes, the de�nition of raiser, and the supplied code for

notice below. Then complete the code for notice, using only except blocks, and perhaps an else block.

class EX(Exception):

pass

class EXX(EX):

pass

class EXXX(EXX):

pass

def raiser(n: int) -> None:

"""Raise exceptions based on divisibility of n"""

if n % 12 == 0:

raise EXXX

elif n % 6 == 0:

raise EXX

elif n % 3 == 0:

Page 1 of ?? cont'd: : :

CSC148H1 Term test #1 | Solutions February 2014

raise EX

else:

b = 1 / n

def notice(n: int) -> str:

"""Return message appropriate to raiser(n).

>>> notice(17)

’fine’

>>> notice("compute")

’whatever!’

>>> notice(12)

’oops! oops! oops!’

>>> notice(6)

’oops! oops!’

>>> notice(3)

’oops!’

"""

try:

raiser(n)

Write some "except" blocks and perhaps an "else" block

below that make notice(...)

have the behaviour shown in the docstring above

except EXXX:

return ’oops! oops! oops!’

except EXX:

return ’oops! oops!’

except EX:

return ’oops!’

except Exception:

return ’whatever!’

else:

return ’fine’

Question 3. [5 marks]

Read over the declaration of the class Tree and the docstring of the function two all. Then complete the

implementation of two all below. It may be helpful to know that the Python builtin function all(L) returns

True if and only if the list L contains only True elements, and False otherwise.

class Tree:

"""Bare-bones Tree ADT"""

def __init__(self: ’Tree’,

Page 2 of ?? cont'd: : :

CSC148H1 Term test #1 | Solutions February 2014

value: object =None, children: list =None):

"""Create a node with value and any number of children"""

self.value = value

if not children:

self.children = []

else:

self.children = children[:] # quick-n-dirty copy of list

def two_all(t: Tree) -> bool:

"""Return whether every value in tree t is 2

precondition - t is a non-empty tree with number values

>>> tn2 = Tree(2, [Tree(4), Tree(4.5), Tree(2), Tree(5.75)])

>>> tn3 = Tree(2, [Tree(2), Tree(2)])

>>> tn1 = Tree(1, [tn2, tn3])

>>> two_all(tn1)

False

>>> two_all(tn3)

True

"""

return t.value == 2 and all([two_all(c) for c in t.children])

Question 4. [5 marks]

Complete the implementation of push in the class PrefixStack, a subclass of Stack. Notice that you may

use push, pop, and is empty, the public operations of Stack, but you may not assume anything about

Stack's underlying implementation. You may �nd it useful to know that if s1 and s2 are strings, then

s2.startswith(s1) is True if and only if s1 is a pre�x of s2.

from csc148stack import Stack

"""

Stack operations:

pop(): remove and return top item

push(item): store item on top of stack

is_empty(): return whether stack is empty.

"""

class PrefixStack(Stack):

"""Stack of strings where each is a prefix of its predecessor"""

def push(self: ’PrefixStack’, s: str) -> None:

Page 3 of ?? cont'd: : :

CSC148H1 Term test #1 | Solutions February 2014

"""Place s on top of stack self, provided s is a prefix of

the current top element (if there is one). Otherwise

raise an Exception and leave stack self as it was

precondition - possibly empty self contains only strings

>>> s = PrefixStack()

>>> s.push("asterisk")

>>> s.push("aster")

>>> # now s.push("asteri") should raise Exception

"""

if not self.is_empty():

last = self.pop()

Stack.push(self, last)

if not last.startswith(s):

raise Exception(’{} not a prefix of {}’.format(s, last))

Stack.push(self, s)

Page 4 of ?? End of Solutions

