
CSC148H1 Term test #1 | Solutions February 2014

Question 1. [5 marks]

Read over the de�nition of this Python function:

def c(s):

"""Docstring (almost) omitted."""

return sum([c(i) for i in s]) if isinstance(s, list) else 1

Work out what each function call produces, and write it in the space provided.

1. c(5)

1

2. c([])

0

3. c(["one", 2, 3.5])

3

4. c(["one", [2, "three"], 4, [5, "six"]])

6

5. c(["one", [2, "three"], 4, [5, [5.5, 42], "six"]])

8

Question 2. [5 marks]

Read over the declarations of the three Exception classes, the de�nition of raiser, and the supplied code for

notice below. Then complete the code for notice, using only except blocks, and perhaps an else block.

class EX(Exception):

pass

class EXX(EX):

pass

class EXXX(EXX):

pass

def raiser(n: int) -> None:

"""Raise exceptions based on divisibility of n"""

if n % 12 == 0:

raise EXXX

elif n % 6 == 0:

raise EXX

elif n % 3 == 0:

Page 1 of 4 cont'd: : :

CSC148H1 Term test #1 | Solutions February 2014

raise EX

else:

b = 1 / n

def notice(n: int) -> str:

"""Return message appropriate to raiser(n).

>>> notice(17)

’fine’

>>> notice("compute")

’whatever!’

>>> notice(12)

’oops! oops! oops!’

>>> notice(6)

’oops! oops!’

>>> notice(3)

’oops!’

"""

try:

raiser(n)

Write some "except" blocks and perhaps an "else" block

below that make notice(...)

have the behaviour shown in the docstring above

except EXXX:

return ’oops! oops! oops!’

except EXX:

return ’oops! oops!’

except EX:

return ’oops!’

except Exception:

return ’whatever!’

else:

return ’fine’

Question 3. [5 marks]

Read over the declaration of the class Tree and the docstring of the function initial a whether. Then complete

the implementation of initial a whether below. It may be helpful to know that the Python builtin function

any(L) returns True if list L contains at least one True element, and False otherwise.

class Tree:

"""Bare-bones Tree ADT"""

def __init__(self: ’Tree’,

Page 2 of 4 cont'd: : :

CSC148H1 Term test #1 | Solutions February 2014

value: object =None, children: list =None):

"""Create a node with value and any number of children"""

self.value = value

if not children:

self.children = []

else:

self.children = children[:] # quick-n-dirty copy of list

def initial_a_whether(t: Tree) -> bool:

"""Return whether at least one value of tree t begins with "a"

precondition - t is a non-empty tree with non-empty string values

>>> tn2 = Tree("one", [Tree("two"), Tree("three"),\

Tree("snapple"), Tree("five")])

>>> tn3 = Tree("answer", [Tree("six"), Tree("seven")])

>>> tn1 = Tree("eight", [tn2, tn3])

>>> initial_a_whether(tn1)

True

>>> initial_a_whether(tn2)

False

"""

return t.value[0] == ’a’ or any([initial_a_whether(c) for c in t.children])

Question 4. [5 marks]

Complete the implementation of push in the class ContainingStack, a subclass of Stack. Notice that you may

use push, pop, and is empty, the public operations of Stack, but you may not assume anything about Stack's

underlying implementation. You may �nd it useful to know that if s1 and s2 are strings, then s1 in s2 is

True if and only if s1 is a substring of s2.

from csc148stack import Stack

"""

Stack operations:

pop(): remove and return top item

push(item): store item on top of stack

is_empty(): return whether stack is empty.

"""

class ContainingStack(Stack):

"""Stack of strings where each element contains its predecessor"""

Page 3 of 4 cont'd: : :

CSC148H1 Term test #1 | Solutions February 2014

def push(self: ’ContainingStack’, s: str) -> None:

"""Place s on top of stack self provided it contains

the string currently on top of self (if there is one). Otherwise,

raise an Exception and leave stack self as it was

precondition - possibly empty self contains only strings

>>> s = ContainingStack()

>>> s.push("solve")

>>> s.push("absolved")

>>> # now s.push("abs") should raise Exception

"""

if not self.is_empty():

last = self.pop()

Stack.push(self, last)

if not last in s:

raise Exception(

’{} is not contained in {}’.format(s, last))

Stack.push(self, s)

Page 4 of 4 End of Solutions

