CSC148 Ramp-up
Winter 2014

http://www.cs.toronto.edu/~buske/rampup/slides.pdf

Orion Buske

(based on notes by Velian Pandeliev, Jonathan Taylor,
Noah Lockwood, and software-carpentry.org)

Overview

In the next 6 hours, we’ll cover the background
required for CSC148.

This session is for students with programming
experience who haven't necessarily taken the
prerequisite, CSC108.

Please ask questions!

Outline

* Talking
* Talking

* Talking
* Lunch

* Talking
* Talking

* Talking

More explicit outline

* Variables and types
 Lists, tuples, and for loops
e Conditionals and functions
* Lunch

* Dictionaries and files

* While loops and modules
* Classes and objects

Meet Python...

1111111111111

Let's speak some Python

* Python is interpreted (no compilation necessary)
 Whitespace matters (4 spaces for indentation)

* No end-of-line character (no semicolons!)

* No extra code needed to start (no "public static...")
* Python is dynamically typed (all variables are void*)
* Python is strongly typed (all values have a type)

Comments start with a '"#' character.

#

Python has dynamic typing, so:

x = 5 # assignment statement (no type specified)
X

= "jabberwocky" # re-assign x to a string

print (x) # prints "jabberwocky"

Python programs

 Programs are stored in .py files
 From the command line (for teh haxOrz):

fuser@redwolf:~$ python myfile.py

* Using the Wing IDE (Integrated Dev. Environment)

Edit python
files here

18 January 2014

-
1 print ‘'Hello Worlda!'

aaaaaa

Run the current file
-

File output and
interactive Python “shell”

6

The blueprint of a Python file:

from random import randint import Names frOm
from math import cos other mOdU|eS

The blueprint of a Python file:

from random import randint
from math import cos

def my function(arg):
return answer

class MyClass:

import names from
other modules

define functions
and classes

The blueprint of a Python file:

from random import randint import Names frOm
from math import cos other mOdU|eS

def my function(arg):

return answer define functions

and classes
class MyClass:

if name == " main ":

my variable =_21 *_2 your main block
goes down here!

The blueprint of a Python file:

from random import randint
from math import cos the

def my function (arg): main
return answer bIOCk
class MyClass: mantra

P

if name == " main ":

my variable = 21 * 2

18 January 2014

10

The blueprint of a Python file:

from random import randint

from math import cos

def my function(arg):

T note the case of
return answer diﬂ:erent Names
and how we use

class MyClass: .
whitespace

if name == " main "

my variable = 21 * 2

Interactive Python

* Python can also be run interactively, from the
bottom-right of Wing, or by typing python on the
command line.

* The result is automatically shown (unlike in a
program, where you must call print).

#user@redwolf:~$ python
Python 3.2.3 (v3.2.3:3d0686d90£55, Apr 10 2012, 11:25:50)

Type "help", "copyright", "credits" or "license" for more
information.

>>> 42

42

>>> (2 ** 3 - 4) / 8

0.5

Getting help

Official Python documentation:
http://docs.python.org/py3k/library/

The he1p function provides usage information:
>>> help (print)

The dir function shows names within a given
type, module, object:
>>> dir (str)

Moar resources!

Last term's 108 and 148 course websites:

http://www.cdf.utoronto.ca/~cscl08h/summer/
http://www.cdf.utoronto.ca/~cscl48h/summer/

Software Carpentry (online lectures):
http://software-carpentry.org/

Google!
http://1lmgtfy.com/?g=python+add+to+list

Learn you to good speak Python

Python's style guide:
http://www.python.org/dev/peps/pep-0008/

Google's Python style guide:

http://google-styleguide.googlecode.com/svn/
trunk/pyguide.html

Expert mode:
pychecker: http://pychecker.sourceforge.net/
pyflakes: https://launchpad.net/pyflakes/

Variables (storing data)

Variables refer to an object of some type
Several basic data types:

* Integers (whole numbers): int
>>> the answer = 42

* Floating-point (decimal) numbers: £loat
>>> pi = 3.14159
>>> radius = 2.0
>>> p1l1 * (radius ** 2)
12.56636
* operators: * / & + - **x //

* "shortcut" operators: x = x + 1 2 x += 1

More types (kinds of things)

* Boolean (True/False) values: bool
>>> passed = False
>>> not passed
True
>>> 5 < 4 # comparisons return bool
False
>>> 5 and 4 # this can bite you
4

* OQOperators: and or not

More types (kinds of things)

* None (it's Python's NULL): NoneType
>>> x = None
>>> print (x)
None
>>> X
>>> # Weird, we'll discuss this later

Strings

e Strings (basically lists of characters): str

>>> welcome = "Hello, world!"
>>> welcome [1] # index, starting with O
'e'

e Slices return sub-strings:
>>> welcome[l:5] # slice with [start:end]
'ello'
>>> welcome[:3] # start defaults to O

'wel'
>>> welcome[9:] # end defaults to None (wtf?)
'rid!"'
>>> welcome[:-1] # index/slice with negatives

'"Hello, world'

18 January 2014 19

Working with strings

 Stick strings together (concatenation):
>>> salutation = "Hello, "
>>> name = "Orion"
>>> salutation + name # evaluates to a new string

'Hello, Orion'

e The 1len function is useful:
>>> len (name) # number of characters
5

Tons of useful methods

* Here are some, look at help (str) for more:
>>> name = "Orion"
>>> name.endswith ('ion')
True
>>> 'rio' in name # substring testing
True
>>> name.startswith('orio')
???? Thoughts?
>>> name.lower ()
'orion' # new string!
>>> name.index ('i'")
2 # What did this do? Try help(str.index)

18 January 2014

21

POP QUIZ!

Write a boolean expression that evaluates to:

True if the variable response starts with the letter

g, case-insensitive, or
False if it does not.

(in CS lingo, we'd say: True iff (if and only if) the variable

response starts with the letter "q", case-insensitive)

POP QUIZ!

response.lower () .startswith('qg')

A little more on strings

e Strings are immutable, meaning they can't be
changed once created

>>> name = 'Orion'
>>> namel[l] = 'n'

Traceback (most recent call last):

File "<stdin>", line 1, 1in <module>
TypeError: 'str' object does not support item
assignment

* Empty strings are OK:

>>> what 1 have to say =

Making strings pretty

e String formatting (str. format):

— http://docs.python.org/release/3.1.5/library/
string.html#formatstrings

— {} are replaced by the arguments to format

— Formatting parameters can be specified using : format

e Similar to printf

>>> n = 99

>>> where = "on the wall"

>>> '"{} bottles of beer {}'.format (n, where)
'99 bottles of beer on the wall'

Standard input/output

* Generating output (stdout): print ()
— Can take multiple arguments (will be joined with spaces)

* Reading keyboard input: input ()

>>> name = 1nput ()

>>> name

'Orion'

>>> print ("Hello " + name)
Hello Orion

>>> "Hello {}".format (name)

'Hello Orion' # Why quotes here?

Converting between types

* AKA: how to sanitize user input

* Functions: int (), float (), str(), bool ()
>>> float('3.14")
3.14
>>> int (9 / 5) # truncates
1
>>> float (3)
3.0
>>> str(3.14)
'3.14"
>>> '"{:.,4f}"'" . format (3.14159265358)
'3.14106"

Converting between types

* Don't do anything silly:

>>> int ('fish')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: invalid literal for int () with base
10: '"fish'

* And beware:

>>> int ('3.0")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: i1nvalid literal for 1int () with base
10: '3.0"

Exercise 1: Temperature

C=(5/9)*(F-32)

* Write a program that:
— prompts the user for degrees in Fahrenheit
— converts the number into Celsius

— prints out the number in Celsius
* to just 2 decimal places, if you dare

(You can assume the user enters a number)

Exercise 1: Solution

Self-check: does your code work for 98.67

Read in the input
fahrenheit = float (input ("Input temperature (F): "))

Convert to Celsius
celsius = (5 / 9) * (fahrenheit - 32)

Display the answer

print ("Temperature 1is {:.2f} degrees C".format (celsius))

Sequences, of, things!

There are two main kinds of sequences (things in an
order) in Python:

-The [Imighty] 1ist
- The (humble,) tuple

[Lists, of, things]

e Lists are a very important data structure in Python
 They are a mutable sequence of any objects

>>> colours = ['cyan', 'magenta', 'yellow']

>>> friends = [] # forever alone

>>> random stuff = [42, 3.14, 'carpe diem']

>>> wtf = [[], [2, 3], friends] # this is crazy

>>> my friends = list(friends) # copy a list

* Index and slice like strings:

>>> colours|[0] # indexing returns the element
'cyan'
>>> random stuff[2:] # slicing returns a sub-list

['carpe diem']

[Lists, of, things].stuff()

 We can change, add, and remove elements from lists
>>> marks = [98, None, 062, 54]

>>> marks[1l] = 75 # change that None

>>> marks.append(90) # add 90 to the end
>>> marks.remove (62) # remove the 62

>>> marks.sort () # sort in place

>>> print (marks)

??? Thoughts?

(54, 75, 90, 98]

18 January 2014 33

[Lists, of, things].stuff()

e Lots of other awesome features, too

>>> marks = [74, 062, 54]

>>> len (marks) # size

3

>>> 54 in marks # membership testing
True

>>> marks.pop(l) # remove/return val at
62

>>> marks + [1l, 2] # concatenation

(74, 54, 1, 2] # new list

18 January 2014

[2]

34

Variable aliasing

e Careful! Multiple variables might be referring to the same
mutable data structure:

>>> sorted list = [1, 2, 3]

>>> not a copy = sorted list # not a copy

>>> not a copy.append(0)

>>> sorted list

(1, 2, 3, 0] # crap

>>> actually a copy = list(sorted 1list)
>>> another copy = sorted list[:]

(Tuples, of, things)

* Tuples are like fast, simple lists, that are immutable
>>> stuff = (42, 3.14, 'carpe diem')
>>> stuff[0] = 'a'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item
assignment

* Can always create a list from them:
>>> 1, = list (stuff)

e >< Alittle weird to get a 1-element tuple:
('a') _> 'a'
('a'/) —> ('a'/)

For loops! (you spin me right round baby...)

* For loops repeat some code for each element in a
sequence
— This is a foreach loop in most languages

>>> colours = ['red', 'green', 'blue']
>>> for colour in colours:

print (colour)

red
green
blue

For loops! (you spin me right round baby...)

* But wait, | actually wanted the index!
— Use range (n) in a for loop to loop over a range.

>>> for 1 1n range(2) :

print (1)

— To start at a value other than 0O:
>>> for 1 1n range (4, 0):
print (1)

For loops! (you spin me right round baby...)

* But wait, | actually wanted the index!
— How should we loop over the indices of a list?

>>> for 1 1n range (len(colours)):

print ("{}. {}".format (1, colours[i]))
0. red
1. green
2. blue

For loops! (you spin me right round baby...)

* But wait, | actually wanted the index!
— Now, over the indices and items!

>>> n = len(colours)

>>> for (1, colour) in zip(range(n), colours):

print ("{}. {}" .Trmat(i, colour))
0. red

1. green zip returns a list of pairs
2. blue

For loops! (you spin me right round baby...)

* But wait, | actually wanted the index!
— Now, over the indices and items!

>>> for (i, colour) 1n enumerate (colours):

print ("{}. {}".format (i, colour))
0. red
1. green
2. blue

Exercise 2: Times table

Compute (and store in a variable) a times table
for the numbers 0 through 9 as a list of lists.

For example, if it were just from O through 2,
you should create:

[0, O, OF,

Exercise 2: Solution

table = []
n =10 # from 0 to (n - 1)
for 1 1n range(n) :
Compute the n'th row
row = |[]
for jJj 1n range(n) :

row.append (1 * 7j)

Add row to full table
table.append (row)

19 January 2014

43

Exercise 2: Solution

table = []
n =10 # from 0 to (n - 1)
for 1 1n range(n) :
Compute the n'th row
row = |[]
Add row to full table
table. append (row)

for J 1n range(n) :

row.append (1 * 7J)

19 January 2014

Does this
still work?

44

Exercise 2: Alternate solution

table = [[row * col for col in range (10)]

for row in range (10)]

(list comprehensions FTW!)

Conditionals (if, elif, else)

e If statements allow you to execute code sometimes (based
upon some condition)

e elif (meaning 'else if') and else are optional

if amount > balance:
print ("You have been charged a $20"
" overdraft fee. Enjoy.")
balance -= 20
elif amount == balance:
print ("You're now broke")
else:

print ("Your account has been charged")

balance -= amount # deduct amount from account

Functions (basically the best things ever)

 They allow you to group together a bunch of statements into
a block that you can call.

* "If you have the same code in two places, it will be wrong in
one before long."

* "Never copy-paste code if at all possible."

* They can take in information (arguments) and give back
information (return value).

* Important: If you don't specify a return value, it will be None

def celsius to fahrenheit (degrees):
return (9 / 5) * degrees + 32

f = celsius to fahrenheit (100)

Docstrings

* They should have a docstring (a multi-line, meaning triple-
qguoted, string right after the declaration)

* Describes what the function does, not how it does it.
* Describe the argument and return types.

* |tis shown when help is called on your function, so it should
be sufficient for other people to know how to use your
function.

def celsius to fahrenheit (degrees):
""" (int or float) -> float
Convert degrees from C to F.

wiiw

return (9 / 5) * degrees + 32

Changing things
* Functions can modify mutable arguments

def double (L) :
"""]list -> NoneType
Modify L so i1t 1s equivalent to L + L

wiimn

for 1 1n range(len (L)) :

L.append(L[1])

L = [1, 2, 3]
double (L) # Don't do this! Why?
double (L) changes the list and then returns None

£
I

18 January 2014

49

Changing things

* Functions can modify mutable arguments
* If no return is specified, None is returned

def double (L) :
"""]li1st -> NoneType
Modify L so 1t 1s equivalent to L + L
for 1 in range(len (L)) :

L.append(L[1i])

L = [1, 2, 3]
double (L)
print(L) # [1, 2, 3, 1, 2, 3]

Exercise 3: Functions

Two words are a reverse pair if each word is the reverse of
the other.

1) Write a function is reverse pair(sl, s2) that
returns True iff s1 and s2 are a reverse pair.

2) Write a function print reverse pairs(wordlist)

that accepts a list of strings and prints out all of the
reverse pairs in the given list, each pair on a line.

Exercise 3: Solution

def 1s reverse pailr(sl, s2):
if len(sl) != len(s2):

return False

for 1 1in range(len(sl)) :
if sl[i1i] != s2[len(s2) - 1 - 1]°:

return False

return True
Or, using slicing:

def is reverse pair(sl, s2):

return slf[::-1] == s2

Exercise 3: Solution

def print reverse pairs(wordlist):
for sl i1n wordlist:
for s2 in wordlist:
1f 1s reverse pailr(sl, s2):
print ("{}, {}".format(sl, s2))

Eat ALL the things...

{'dictionaries': 'awesome'}

* Dictionaries (type dict) are an unordered
association of keys with values

* We usually use them to store associations:
— like name -> phone number
— phone number -> name
— student id -> grade

{'dictionaries': 'awesome'}

* Dictionaries (type dict) are an unordered
association of keys with values

* We usually use them to store associations:
— like name -> phone number
— phone number -> name

— student id -> grade
— grade -> student id #BAD, why?

{'dictionaries': 'awesome'}

* Dictionaries (type dict) are an unordered
association of keys with values

* We usually use them to store associations:
— like name -> phone number
— phone number -> name

— student id -> grade
— grade -> list of student ids

* Keys must be unique and immutable

{'dictionaries': 'awesome'}

>>> gcores = {'Alice': 90, 'Bob': 76, 'Eve': 82}
>>> scores['Alice'] # get

90

>>> scores['Charlie'] = 64 # set

>>> gcores.pop ('Bob') # delete

76

>>> 'Eve' 1n scores # membership testing

True

>>> for name in scores: # loops over keys

print ("{}: {}".format (name, scores[name]))

Charlie: 064
Alice: 88
Eve: 82

A brief detour to open some files
* The naive way:
f = open("myfile.txt")
for line 1in f:
do something with each line

f.close ()

What happens if an error occurs?

A brief detour to open some files

e Usewith/as toopen something for a while, but
always close it, even if something goes wrong.

* Easiest way to read files:
with open('myfile.txt') as open file:
for line in open file:

do something with each line

* Easiest way to write to files:
with open('myfile.txt', 'w') as open file:

print (data, file=open file) # write to the file

Exercise 4: Dictionaries

Write a function print record that takes a dictionary as input.
Keys are student numbers (int), values are names (str). The
function should print out all records, nicely formatted.

>>> record = {1234: 'Tony Stark', 1138: 'Steve Rogers'}

>>> print record(record)
Tony Stark (#1234)
Steve Rogers (#1138)

Write a function count occurrences that takes an open file as
input, and returns a dictionary with key/value pairs of each word
and the number of occurrences of that word. (a word is a white-

space delimited token, and can have punctuation)
>>> open file = 10.StringIO('a b a a ¢c ¢ a.')

>>> count occurences (open file)

{'a': 3, 'b': 1, 'a.': 1, 'c': 2} |hints:inand str.split

Exercise 4: Solution

def print record(record):
for pin in record:

print ('{} (#{})'.format (record[pin], pin))

Exercise 4: Solution

def count occurrences (file):
counts = {}
for line in file:
for word in line.split():
1f word 1n counts:
counts[word] += 1
else:
counts[word] = 1

return counts

While Ioops (right round right round...)

* While loops keep repeating a block of code while a
condition is True

What does this code do?
val = 10
while val > 0O:

print ("hello")

val —= 1

prints "hello" 10 times

18 January 2014

While Ioops (right round right round...)

* While loops keep repeating a block of code while a
condition is True

What does this code do-?

val = 167
while val > O:
1f val $ 2 == 0:
print ("0")
else:
print ("1")

val = int(val / 2)

prints (reverse) binary representation of val

18 January 2014

While Ioops (right round right round...)

e break can be used to exit a loop early

What does this code do?
while True: # This is an infinite loop
Stop when the user types 'quit', 'Q', etc.
response = 1input ("Enter number or 'quit':")
1f response.lower () .startswith('qg'):
break # This breaks out of the loop

18 January 2014

66

Modules (why reinvent the wheel?)

Python has a spectacular assortment of modules that you can
use (you have to import their names first, though)

>>> from random import randint # now we can use 1it!
>>> randint(l, 6) # roll a die

4 # http://xkcd.com/221/

>>> import math

>>> math.sqgrt (2)

1.4142135623730951

>>> math.cos (0)

1.0

>>> import datetime

>>> dir (datetime)

Exercise 5: Guessing game

Implement a guessing game:

Guess a number between 0 and 100: 50
Too high.
Guess a number between 0 and 100: 25

Too low.

|uh
o

Guess a number between 0 and 100:
Too low.

Guess a number between 0 and 100:

I
S

Guess a number between 0 and 100:

Correct. Thanks for playing!

hint: "random" module

Exercise 5: Solution

from random import randint

Choose a random number

low = 0
high = 100
answer = randint (low, high)

found = False
while not found:

print ("Guess a number between {} and {}:

.vv'.format(low, hlgh), endznn)

"

guess = int (input())
Print response if guess is in range
if guess >= low and guess <= high:
if guess > answer:
print ("Too high.")
elif guess < answer:
print ("Too low.")

else:
print ("Correct. Thanks for playing!")

found = True # Or you could use break here

18 January 2014

69

Classes and objects - philosophy

e Classes are descriptions of types of things (like a
blueprint), and objects are specific instances of a
type (like the actual building).

* Objects have associated state (attributes) and
behavior (methods).

* We usually want to hide the implementation as much
as possible, so that the people using our classes
don't need to know how they are implemented, and
so they don't go mucking around where they
shouldn't.

e These will be discussed in much more detail in 148.

Classes and objects - simple e.g.

class Point:

pass

Then we can make a Point object and use it!

position = Point ()
position.x = 5 # add attributes to our object
position.y = -2

print ((position.x, position.y)) # (5, -2)

18 January 2014

71

Classes and objects - simple e.g.

class Point:
def init (self, x=0, y=0):

self.x = X

self.y = vy

Then we can make a Point object and use it!
position = Point (0, 0) # or Point (), since defaults
position.x += 5 # adjust the attribute values
position.y —-= 2

print ((position.x, position.y)) # (5, -2)

18 January 2014

72

Classes and objects - simple e.g.

class Point:
def init (self, x=0, y=0):

self.x = X

self.y = vy

def translate(self, dx, dy):
"""Translate the point by dx and dy"""
self.x += dx
self.y += dy

Then we can make a Point object and use it!
position = Point (0, O0) # or Point (), since defaults
position.translate (dy=-2, dx=5) # use keyword arguments

print ((position.x, position.y)) # (5, -2)

19 January 2014 73

Classes and objects - simple e.g.

class Point:

def init (self, x=0, y=0):

self.x = X

self.y = vy

def translate(self, dx, dy):
"""Translate the point by dx and dy"""
self.x += dx
self.y += dy

def str (self) :

return "({}, {})".format(self.x, self.y)

position = Point (5, -2)

print (position) # (5, -2)

Classes and objects - simple e.g.

def my init(point, x=0, y=0):
point.x = x

point.y = vy
def my translate(point, dx, dy):
point.x += dx

point.y += dy

class Point:

pass
Point. 1nit = my init

Point.translate = my translate # change the Point class
position = Point (2, 8) # this works!

position.translate (5, -2) # this works!

Magic mushrooms methods

* "Magic" methods start and end with two
underscores

* They allow your Classes to take advantage of
Python built-ins and syntactic sugar, e.g.:

>>> my object = MyClass|()
>>> len(my object) # len

>>> str(my object) # str

>>> my object[5] # getitem

>>> for element in my object: # iter

Magic mushrooms methods

class Point:
def init (self, x=0, y=0):

self.x = x
self.y = vy
def str (self):
return "({}, {})".format(self.x, self.y)

def repr (self):
return "Point ({}, {})".format(self.x, self.y)
>>> p = Point (5, 3)
>>> str(p)
1(5, 3)1
>>> repr (p)
'"Point (5, 3)'

>>> print (p) .
(5, 3) * print usesstr

>>> p
Point (5, 3) * the prompt uses repr

Magic mushrooms methods

Remember this?

>>> x = None
>>> print (x)
None

>>> X

>>> # Weird, we'll discuss this later

* print uses str
* the prompt uses repr

Classes and objects - complex e.g.

As a user of the IPhone class, we usually don't want to know what goes on under the
surface. And Apple certainly doesn't want us messing around with what's inside (we
might screw things up!). So this is how we might think about a class as a client:

class IPhone:
def init (self):

"""Tnitialize the i1Phone"""

def call(self, phone number) :

"""Call the given phone number"""

def kill switch(self, authorization code):

"""Brick the i1Phone"""

Then we can make an IPhone object and use it!

precious = IPhone ()
precious.call ('123.456.7890")

Classes and objects - complex e.g.

As a developer, we want to hide the implementation as much as
possible. This lets us change our implementation later without
breaking everything!

class IPhone:
def init (self):
"""Tnitialize the iPhone"""

Private attributes start with an underscore

" "

self. call timer = 0
self. recent calls = []

self. network = RogersNetwork (self)

def call(self, phone number):
"""Call the given phone number"""
self. recent calls.append(phone number)

self. network.connect (phone number)

Exercise 6: NumberList

Write a class that stores a list of integers/floats and provides the
following methods:

sum () -returnthe sum of the numbers in the list

mean () - return the average of the numbers in the list as a float

min () /max () - return the minimum/maximum element

num unique () -returnthe number of unique elements in the list

For example:
>>> nl = NumberList([1l, 2, 5, 1, 4, 3, 31)
>>> nl.sum/()

19 Hint: Use the in keyword:
>>> nl.num unique () >>> nums = [1, 3, 9, 16]
5 _ >>> 3 1n nums

True

>>> 7 1in nums
False

Exercise 6: Solution

class NumberList:
def init (self, L):

self. L = list (L) # make a copy

def sum(self) :
result = 0
for value 1n self. L:

result += wvalue
return result
def mean(self) :

n = len(self. L)

return self.sum() / n

Exercise 6: Solution

def max(self) :
result = None

for value 1in self. L:

1f result 1s None or x > result:

result = x

return result

Exercise 6: Solution

def num unique (self) :

18 January 2014

One of many possible solutions

Also: return len(set(self. L))

seen = []
for value in self. L:

1f value not 1n seen:

seen.append (value)

return len (seen)

84

fin

