AL — due tomovws, g0 pm — e L S s byas
T1 - b X Wik, 64%m1E4 gfaé(ikj” posted, o)
- wp B end o -\mi:j —
CSC148 winter 2014

recursive structures
week 6

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/148/F13/
416-978-5899

February 12, 2014

o
% UN[VERSITY OF TORONTO

Outline

a
Computer Science
UNIVERSITY OF TORONTO

recursion, natural and otherwise

terminology

> set of nodes (possibly with values or labels), with directed edges
between some pairs of nodes

» One node is distinguished as root

» Each non-root node has exactly one parent.

» A path is a sequence of nodes ny, ny, ..., ng, where there is an
edge from n; to n; ;. The length of a path is the number of
edges in it

» There is a unique path from the root to each node. In the case of
the root itself this is just ny, if the root is node n;.

» There are no cycles — no paths that form loops.

&
3 Computer Science
w UNIVERSITY OF TORONTO

more terminology

» leaf: node with no children
» internal node: node with one or more children

> subtree: tree formed by any tree node together with its
descendants and the edges leading to them.

» height: Maximum path length in a tree. A node also defines a
height, which is the maximum path length of the tree rooted at
that node

» arity, branching factor: maximum number of children for any node.

&
Gy Computer Science
w UNIVERSITY OF TORONTO

pre-order traversal

Visit root, then pre-order left subtree, then pre-order right
subtree

&
Gy Computer Science
e UNIVERSITY OF TORONTO

exercise: code for preorder traversal

wun

A TreeList is either None or a Python list with 3 elements, where
--- element 0 is a value
--- element 1 is a TreelList

--- element 2 is a TreelList
i

def preorder(tl: ’TreeList’) -> list:

Return list of values in tl in preorder

>>> T = [5, [4, None, None], [3, [2, None, None], [1, None, None]]]
>>> preorder (T)
[5, 4, 3, 2, 1]

a
Computer Science
&7 UNIVERSITY OF TORONTO

in-order traversal

Visit in-order left subtree, then root, then in-order right subtree

&
3 Computer Science
w UNIVERSITY OF TORONTO

exercise: code for inorder traversal

wun

A TreeList is either None or a Python list with 3 elements, where
--- element 0 is a value
--- element 1 is a TreelList

--- element 2 is a TreelList
i

def inorder(tl: ’TreelList’) -> list:

Return list of values in tl in order

>>> T = [5, [4, None, None], [3, [2, None, None], [1, None, None]]]
>>> inorder(T)
[4, 5, 2, 3, 1]

a
Computer Science
&7 UNIVERSITY OF TORONTO

post-order traversal

Visit post-order left subtree, then post-order right subtree, then
root

&
Gy Computer Science
v UNIVERSITY OF TORONTO

exercise: code for postorder traversal

wun

A TreeList is either None or a Python list with 3 elements, where
--- element 0 is a value
--- element 1 is a TreelList

--- element 2 is a TreelList
i

def postorder(tl: ’TreeList’) -> list:

Return list of values in tl in postorder

>>> T = [5, [4, None, None], [3, [2, None, None], [1, None, None]]]

>>> postorder (T)
[4, 2, 1, 3, 8]

a
Computer Science
&7 UNIVERSITY OF TORONTO

general tree implementation

Python list class has way more methods and attributes than
needed. Let’s specialize on Tree ADT.

class Tree:
def __init__(self: ’Tree’,
value: object =None, children: list =Nomne):
¢ """Create a node with value and any number of children"""
O
self.value = value
if not children:
self.children = []
else:
self.children = children[:] # quick-n-dirty copy of list

def __contains__(self: ’Tree’ , value: object) -> bool:
"""True if Tree has a node with value
nun
return (self.value == value or
any([t.__contains__(value) for t in self.children]))

3 Computer Science
UNIVERSITY OF TORONTO

add a string representation Tree yols

- > 1feeq
e e - S
— Tiee (ko €1

def __repr__(self: ’Tree’) -> str:
"""Return r rese(tatlon o Tree as a string"""

retum “Tree(d i?) wea(md(feff(“m"‘&l\
repe (self. e Mﬂ«\)

o
% UN[VERSITY OF TORONTO

—_—

)

sum up the number of nodes aﬂffﬂ”’ A et
- J

ol w0 Fondhrs e~ 2

Trees

def count(t: Tree) -> int: 1= 0)

"""How many nodes in this Tree? vs

>>> tn?2
>>> tn3
>>> tnl

-L = dQ\

SN

Tree(2, [Tree(4), Tree(4.5), Tree(5), Tree(5.75)])
Tree(3, [Tree(6), Tree(7)])
Tree(1l, [tn2, tn3])

>>> count (tnl)

9

nnn

fetuin

1+ Som ([eomd () e t-oki\lw«])

o
% UN[VERSITY OF TORONTO

height of this tree? 0 O Aa
N
def height(t: Tree) -> int:

Return length of longest paz? of t Ff g

N —

>>> tn2 = Tree(2, [Tree(4), Tree(4.5), Tree(5), Tree(5.75)])
>>> tn3 = Tree(3, [Tree(6), Tree(7)])
>>> tnl = Tree(1, [tn2, tn3])

>>> height(tnl)

2 ::[]

1 more edge than the maxim height of a child, except

what happens if there are children?
re"("\fn (O Lé |

|+ ey (EIW*V“\ for o J“'“w‘“])

o

Computer Science
&7 UNIVERSITY OF TORONTO

how many leaves? Q}
/J \
[760

def leaf_count(t: Tree) -> int:
"""Return number of leaves in t

>>> tn2 = Tree(2, [Tree(4), Tree(4.5), Tree(5), Tree(5.75)])
>>> tn3 = Tree(3, [Tree(6), Tree(7)])
>>> tnl = Tree(1, [tn2, tn3]) lé
>>> leaf_count (tnl) {s {en
"y /e -~

gl o b A

o
% UN[VERSITY OF TORONTO

arity, or branching factor

def arity(t: Tree) -> int:
"""Maximum branching factor of tree T

>>> tn2 = Tree(2, [Tree(4), Tree(4.5), Tree(5), Tree(5.75)])
>>> tn3 = Tree(3, [Tree(6), Tree(7)])
>>> tnl = Tree(1, [tn2, tn3])

>>> arity(tnl)
4

k-
. Computer Scienc
UNIVERSITY OF TORONTO

